Bài 59 trang 56 SGK giải tích 12 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 59. Chứng minh rằng các đồ thị của ba hàm số: \(f\left( x \right) =  - {x^2} + 3x + 6\); \(g\left( x \right) = {x^3} - {x^2} + 4\) và \(h\left( x \right) = {x^2} + 7x + 8\) tiếp xúc với nhau tại điểm \(A(-1;2)\) (tức là chúng có cùng tiếp tuyến tại \(A\)).

Hướng dẫn giải

Ta có: \(f\left( { - 1} \right) = g\left( { - 1} \right) = h\left( { - 1} \right) = 2\)

Do đó điểm \(A(-1;2)\) là điểm chung của ba đường cong đã cho. Ngoài ra, ta có:

\(\eqalign{
& f'\left( x \right) = - 2x + 3;\,g'\left( x \right) = 3{x^2} - 2x;\,h'\left( x \right) = 2x + 7 \cr
& f'\left( { - 1} \right) = g'\left( { - 1} \right) = h'\left( { - 1} \right) = 5 \cr} \)

Vậy ba đường cong có tiếp tuyến chung điểm \(A\).

Copyright © 2021 HOCTAP247