Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 70. Người ta định làm một cái hộp hình trụ bằng tôn có thể tích \(V\) cho trước. Tìm bán kính đáy \(r\) và chiều cao của hình trụ sao cho tốn ít nguyên liệu nhất.

Hướng dẫn giải

Thể tích của hình trụ là: \(V = B.h = \pi {r^2}.h \Rightarrow h = {V \over {\pi {r^2}}}\)

Diện tích toàn phần của hình trụ là:

\(S = 2\pi {r^2} + 2\pi r.h = 2\pi {r^2} + 2\pi .r.{V \over {\pi {r^2}}} = 2\pi {r^2} + {{2V} \over r}\)

Xét hàm số: 

\(\eqalign{
& S\left( r \right) = 2\pi {r^2} + {{2V} \over r}\,\,\left( {r > 0} \right) \cr
& S' = 4\pi r - {{2V} \over {{r^2}}} = {{4\pi {r^2} - 2V} \over {{r^2}}} \cr
& S' = 0 \Leftrightarrow r = \root 3 \of {{V \over {2\pi }}} \cr} \)

Bảng biến thiên: 

\(S\) đạt giá trị nhỏ nhất tại điểm \(r = \root 3 \of {{V \over {2\pi }}} \) khi đó \(h = {V \over {\pi {r^2}}} = {V \over {\pi \root 3 \of {{{{V^2}} \over {4{\pi ^2}}}} }} = \root 3 \of {{{4V} \over \pi }} \)

Copyright © 2021 HOCTAP247