Trang chủ Lớp 12 Toán Lớp 12 SGK Cũ Bài 4. Số e và loogarit tự nhiên Bài 44 trang 97 SGK Đại số và Giải tích 12 Nâng cao

Bài 44 trang 97 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 44. Chứng minh:

\({7 \over {16}}\ln \left( {3 + 2\sqrt 2 } \right) - 4\ln \left( {\sqrt 2  + 1} \right) - {{25} \over 8}\ln \left( {\sqrt 2  - 1} \right) = 0\)

Hướng dẫn giải

Ta có \({7 \over {16}}\ln \left( {3 + 2\sqrt 2 } \right) - 4\ln \left( {\sqrt 2  + 1} \right) - {{25} \over 8}\ln \left( {\sqrt 2  - 1} \right)\)

\( = {7 \over {16}}\ln {\left( {\sqrt 2  + 1} \right)^2} - 4\ln \left( {\sqrt 2  + 1} \right) - {{25} \over 8}\ln {1 \over {\sqrt 2  + 1}}\)

\( = {7 \over 8}\ln \left( {\sqrt 2  + 1} \right) - 4\ln \left( {\sqrt 2  + 1} \right) + {{25} \over 8}\ln \left( {\sqrt 2  + 1} \right) = 0\)

Copyright © 2021 HOCTAP247