Bài 17 Trang 161 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 17. Dùng phương pháp đổi biến số tính các tích phân sau:

a) \(\int\limits_0^1 {\sqrt {x + 1} dx;} \)              b) \(\int\limits_0^{{\pi  \over 4}} {{{\tan x} \over {{{\cos }^2}x}}} dx;\)                     

c) \(\int\limits_0^1 {{t^3}} {\left( {1 + {t^4}} \right)^3}dt;\)        d) \(\int\limits_0^1 {{{5x} \over {{{\left( {{x^2} + 4} \right)}^2}}}} dx;\)               

e) \(\int\limits_0^{\sqrt 3 } {{{4x} \over {\sqrt {{x^2} + 1} }}} dx;\)                 f) \(\int\limits_0^{{\pi  \over 6}} {\left( {1 - \cos 3x} \right)} \sin 3xdx.\) 

Hướng dẫn giải

a) Đặt \(u = \sqrt {x + 1}  \Rightarrow {u^2} = x + 1 \Rightarrow 2udu = dx.\)   

Đổi cận 

  

\(\int\limits_0^1 {\sqrt {x + 1} } dx = \int\limits_1^{\sqrt 2 } {u.2udu = 2\int\limits_1^{\sqrt 2 } {{u^2}du} }  = \left. {2.{{{u^3}} \over 3}} \right|_1^{\sqrt 2 } = {2 \over 3}\left( {2\sqrt 2  - 1} \right)\)

b) Đặt \(u = \tan x \Rightarrow du = {{dx} \over {{{\cos }^2}x}}\)

\(\int\limits_0^{{\pi  \over 4}} {{{\tan x} \over {{{\cos }^2}x}}} dx = \int\limits_0^1 {udu = } \left. {{{{u^2}} \over 2}} \right|_0^1 = {1 \over 2}\)

c) Đặt \(u = 1 + {t^4} \Rightarrow du = 4{t^3}dt \Rightarrow {t^3}dt = {{du} \over 4}\)

\(\int\limits_0^1 {{t^3}\left( {1 + {t^4}} \right)} dt = {1 \over 4}\int\limits_1^2 {{u^3}} du = \left. {{1 \over 4}{{{u^4}} \over 4}} \right|_1^2 = {1 \over {16}}\left( {16 - 1} \right) = {{15} \over {16}}\)

d) Đặt \(u = {x^2} + 4 \Rightarrow du = 2xdx \Rightarrow xdx = {1 \over 2}du\)

\(\int\limits_0^1 {{{5x} \over {{{\left( {{x^2} + 4} \right)}^2}}}} dx = {5 \over 2}\int\limits_4^5 {{{du} \over {{u^2}}}}  = \left. {{5 \over 2}\left( { - {1 \over u}} \right)} \right|_4^5 = {1 \over 8}\)

e) Đặt \(u = \sqrt {{x^2} + 1}  \Rightarrow {u^2} = {x^2} + 1 \Rightarrow udu = xdx\)

\(\int\limits_0^{\sqrt 3 } {{{4x} \over {\sqrt {{x^2} + 1} }}} dx = 4\int\limits_1^2 {{{udu} \over u}}  = \left. {4u} \right|_1^2 = 4\)

f) Đặt \(u = 1 - \cos 3x \Rightarrow du = 3\sin 3xdx \Rightarrow \sin 3xdx = {1 \over 3}du\)

\(\int\limits_0^{{\pi  \over 6}} {\left( {1 - \cos 3x} \right)} \sin 3xdx = {1 \over 3}\int\limits_0^1 {udu = \left. {{{{u^2}} \over 6}} \right|} _0^1 = {1 \over 6}\)

Copyright © 2021 HOCTAP247