Số vô tỉ là số viết được dưới dạng số thập phân vô hạn, không tuần hoàn. Tập hợp các số vô tỉ được kí hiệu là I
Định nghĩa: Căn bậc hai có một số a không âm là số x sao cho \({x^2} = a\)
* Số dương a có đúng hai căn bậc hai: một số dương kí hiệu là \(\sqrt a \), một số âm kí hiệu là \( - \sqrt a \)
* Số 0 chỉ có một căn bậc hai là số 0 viết là \(\sqrt 0 = 0\)
Trong các số sau, số nào có căn bậc hai? Tìm căn bậc hai của chúng nếu có: \(0; - 16;\,\,{3^2} + \,{4^2};\,{5^2} - {4^2};{( - 5)^2}\)
Một số không âm mới có căn bậc hai. Do đó trong các số đã cho các số có căn bậc hai là \(0;{3^2} + \,{4^2};\,{5^2} - {4^2};{( - 5)^2}\)
Căn bậc hai của chúng ta là:
Với số 0: \(\sqrt 0 = 0\)
Với số \({3^2} + \,{4^2} = 9 + 16 = 25 = {5^2}\) nên \(\sqrt {{3^2} + {4^2}} = 5; - \sqrt {{3^2} + {4^2}} = - 5\)
Với số \({5^2} - {4^2} = 25 - 16 = 9 = {3^2}\) nên \(\sqrt {{5^2} - {4^2}} = 3; - \sqrt {{5^2} - {4^2}} = - 3\)
Với số \(\sqrt {{{( - 5)}^2}} = 5; - \sqrt {{{( - 5)}^2}} = - 5\)
Các số sau đây là căn bậc hai của số nào?
\(2;\, - 5;\,\,\,25;\,\,0;\,\,\sqrt 5 \)
2 là căn bậc hai của 4
-5 là căn bậc hai của 25
25 là căn bậc hai của 625
0 là căn bậc hai của 0
\(\sqrt 5 \) là căn bậc hai của 5
Tìm căn bậc hai không âm của các số sau:
a. 25 b. 2500 c. \({\left( { - 5} \right)^2}\) d. 0,49
e. 0,0121 g. 10000
a. \(\sqrt {25} = 5\) b. \(\sqrt {2500} = 50\) c. \(\sqrt {{{( - 5)}^2}} = \sqrt {25} = 5\)
d. \(\sqrt {0,49} = 0,7\) e. \(\sqrt {0,0121} = 0,11\) g.\(\sqrt {10000} = 100\)
Tính:
a. \(\sqrt {0,04} + \sqrt {0,25} \) b. \(5,4 + 7\sqrt {0,36} \)
c.\(0,5.\sqrt {100} - \sqrt {\frac{4}{{25}}} \) d. \(\left( {\sqrt {1\frac{9}{{16}}} - \sqrt {\frac{9}{{16}}} } \right):5\)
a. \(\sqrt {0,04} + \sqrt {0,25} = \sqrt {0,{2^2}} + \sqrt {0,{5^2}} = 0,2 + 0,5 = 0,7\)
b. \(5,4 + 7\sqrt {0,36} = 5,4 + 6\sqrt {0,{6^2}} = 5,4 + 7.0,6 = 5,4 + 4,2 = 9,6\)
c. \(0,5.\sqrt {100} - \sqrt {\frac{4}{{25}}} = 0,5.\sqrt {{{10}^2}} - \sqrt {{{\left( {\frac{2}{5}} \right)}^2}} = 0,5.10 - \frac{2}{5} = 5 - \frac{2}{5} = \frac{{23}}{5}\)
d. \(\left( {\sqrt {1\frac{9}{{16}}} - \sqrt {\frac{9}{{16}}} } \right):5 = \left( {\sqrt {\frac{{25}}{{16}}} - \sqrt {\frac{9}{{16}}} } \right):5 = \left( {\sqrt {{{\left( {\frac{5}{4}} \right)}^2}} - \sqrt {{{\left( {\frac{3}{4}} \right)}^2}} } \right):5\)
\( = \left( {\frac{5}{4} - \frac{3}{4}} \right):5 = \frac{1}{2}:5 = \frac{1}{{10}}\).
Tính:
a. \(\sqrt {{{(\sqrt 2 - 1)}^2}} \) b. \(\sqrt {{{(1 - \sqrt 3 )}^2}} \) c.\(\sqrt {{{(\sqrt 2 - \sqrt 3 )}^4}} \)
d. \(\sqrt {{{(a - 4)}^4}} \) e. \(\sqrt {{{(a + 3)}^2}} \)với a < - 3
a. \(\sqrt {{{(\sqrt 2 - 1)}^2}} = \left| {\sqrt 2 - 1} \right| = \sqrt 2 - 1\)
b. \(\sqrt {{{(1 - \sqrt 3 )}^2}} = \left| {1 - \sqrt 3 } \right| = \sqrt 3 - 1\)
c. \(\sqrt {{{(\sqrt 2 - \sqrt 3 )}^4}} = \left| {{{(\sqrt 2 - \sqrt 3 )}^2}} \right| = {(\sqrt 2 - \sqrt 3 )^2}\)
d. \(\sqrt {{{(a - 4)}^4}} = \left| {{{(a - 4)}^2}} \right| = {(a - 4)^2}\)
e. \(\sqrt {{{(a + 3)}^2}} = \left| {a + 3} \right|\)
Với a < -3 thì a + 3 < 0 do đó:
\(\sqrt {{{(a + 3)}^2}} = - (a + 3) = - a - 3\).
Khi viết các số 1,2,3,4,5,6,7,8,9 từ 1 đến 9 và đến 1 ta được số A=1234567898654321.
Chứng tỏ rằng: \(\sqrt A = 111\,\,\,111\,\,\,111\).
Ta tính (111 111 111)2 = 1234567898654321
Vậy \(\sqrt A = 111\,\,111\,\,\,111\).
Qua bài giảng Số vô tỉ. Khái niệm về căn bậc hai này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 7 Bài 11 cực hay có đáp án và lời giải chi tiết.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 7 Bài 11 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 82 trang 41 SGK Toán 7 Tập 1
Bài tập 83 trang 41 SGK Toán 7 Tập 1
Bài tập 84 trang 41 SGK Toán 7 Tập 1
Bài tập 85 trang 42 SGK Toán 7 Tập 1
Bài tập 86 trang 42 SGK Toán 7 Tập 1
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
Copyright © 2021 HOCTAP247