Rút gọn các biểu thức sau:
a) \({{{x^2} - 3} \over {x + \sqrt 3 }}\)
b) \({{1 - a\sqrt a } \over {a - \sqrt a }}\) với \(a \ge 0;\,\,a \ne 1\)
a) \(\eqalign{& {{{x^2} - 3} \over {x + \sqrt 3 }} = {{\left( {x + \sqrt 3 } \right)\left( {x - \sqrt 3 } \right)} \over {x + \sqrt 3 }} = {{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a + a} \right)} \over {1 - \sqrt a }} \cr & = a + \sqrt a + 1 \cr} \)
b) \(\eqalign{& {{1 - a\sqrt a } \over {a - \sqrt a }} = {{1 - {{\left( {\sqrt a } \right)}^3}} \over {1 - \sqrt a }} = {{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a + a} \right)} \over {1 - \sqrt a }} \cr & = a + \sqrt a + 1 \cr} \)
Copyright © 2021 HOCTAP247