Quy tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. Quy tắc thế gồm hai bước sau:
Bước 1: Từ một phương trình của hệ đã cho (coi là phương trình thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn).
Bước 2: Dùng phương trình mới để thay thế cho một trong hai phương trình của hệ, ta được một hệ phương trình mới tương đương với hệ ban đầu.
Bước 1: Dùng quy tắc thế biến đổi hệ phương trình đã cho để được một hệ phương trình mới tương đương, trong đó có một phương trình một ẩn.
Bước 2: Giải phương trình một ẩn đó, từ đó tìm ẩn còn lại, rồi suy ra nghiệm của hệ đã cho.
Bài 1: Giải hệ phương trình sau bằng phương pháp thế \(\left\{\begin{matrix} x-2y=1\\ x+y=1 \end{matrix}\right.\)
Hướng dẫn: Ta có \(\left\{\begin{matrix} x-2y=1\\ x+y=1 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y+1\\ x+y=1 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y+1\\ 2y+1+y=1 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y+1\\ 3y=0 \end{matrix}\right.\) \(<=>\left\{\begin{matrix} x=1\\ y=0 \end{matrix}\right.\)
Bài 2: Giải hệ phương trình sau bằng phương phép thế \(\left\{\begin{matrix} -x+2y=1\\ 2x-4y=-2 \end{matrix}\right.\)
Hướng dẫn: Ta có \(\left\{\begin{matrix} -x+2y=1\\ 2x-4y=-2 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y-1\\ 2x-4y=-2 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y-1\\ 2(2y-1)-4y=-2 \end{matrix}\right.\) \(<=>\left\{\begin{matrix} x=2y-1\\ 0y=0 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y-1\\ y \in \mathbb{R} \end{matrix}\right.\)
Bài 3: Chứng minh hệ phương trình sau vô nghiệm \(\left\{\begin{matrix} x-3y=2\\ -3x+9y=0 \end{matrix}\right.\)
Hướng dẫn: Ta có \(\left\{\begin{matrix} x-3y=2\\ -3x+9y=0 \end{matrix}\right.<=>\left\{\begin{matrix} x=3y+2\\ -3x+9y=0 \end{matrix}\right.<=>\left\{\begin{matrix} x=3y+2\\ -3(3y+2)+9y=0 \end{matrix}\right.\) \(<=>\left\{\begin{matrix} x=3y+2\\ 0x=6 \end{matrix}\right.\).
Do phương trình \(0x=6\) vô nghiệm nên hệ đã cho vô nghiệm
Bài 1: Cho hệ phương trình với tham số a: \(\left\{\begin{matrix} (a+1)x-y=a+1\\ x+(a-1)y=2 \end{matrix}\right.\). Giải và biện luận hệ này.
Hướng dẫn: Ta có \(\left\{\begin{matrix} (a+1)x-y=a+1\\ x+(a-1)y=2 \end{matrix}\right.<=>\left\{\begin{matrix} y=(a+1)x-(a+1)\\ x+(a-1)y=2 \end{matrix}\right.<=>\left\{\begin{matrix} y=(a+1)x-(a+1)\\ x+(a-1)[(a+1)x-(a+1)]=2 \end{matrix}\right.\) \(<=> \left\{\begin{matrix} y=(a+1)x-(a+1)\\ a^2x=a^2+1 \end{matrix}\right.\)
Nếu \(a \neq 0\) thì hệ tương đương \(\left\{\begin{matrix} y=(a+1)x-(a+1)\\ x=\frac{a^2+1}{a^2} \end{matrix}\right. <=>\left\{\begin{matrix} y=\frac{a+1}{a^2}\\ x=\frac{a^2+1}{a^2} \end{matrix}\right.\)
Nếu \(a=0\) thì hệ tương đương \(\left\{\begin{matrix} y=x-1\\ 0x=1 \end{matrix}\right.\). Do phương trình \(0x=1\) vô nghiêm nên hệ vô nghiệm.
Bài 2: Biết rằng đa thức \(P(x)\) chia hết cho \(x-a\) khi và chỉ khi \(P(a)=0\) (định lý Bezout). Tìm các giá trị a, b sao cho đa thức sau đồng thời chia hết cho \(x-1\) và \(x-2\):
\(P(x)=ax^4+(a-1)x^3+bx^2+3x+1\)
Hướng dẫn: Từ giả thiết ta có \(\left\{\begin{matrix} P(1)=0\\ P(2)=0 \end{matrix}\right.<=>\left\{\begin{matrix} 2a+b=3\\ 24a+4b=1 \end{matrix}\right.\). Giải hệ này bằng phương pháp thế ta được \(\left\{\begin{matrix} a=\frac{13}{16}\\ b=\frac{-37}{8} \end{matrix}\right.\)
Qua bài giảng Giải hệ phương trình bằng phương pháp thế này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 9 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Tìm nghiệm của hệ phương trình sau \(\left\{\begin{matrix} x+y=2\\ 2x-y=1 \end{matrix}\right.\).
Tìm nghiệm của hệ phương trình sau \(\left\{\begin{matrix} x+y=3\\ 2x-3y=1 \end{matrix}\right.\).
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 9 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 2
Bài tập 12 trang 15 SGK Toán 9 Tập 2
Bài tập 13 trang 15 SGK Toán 9 Tập 2
Bài tập 14 trang 15 SGK Toán 9 Tập 2
Bài tập 15 trang 15 SGK Toán 9 Tập 2
Bài tập 16 trang 16 SGK Toán 9 Tập 2
Bài tập 17 trang 16 SGK Toán 9 Tập 2
Bài tập 18 trang 16 SGK Toán 9 Tập 2
Bài tập 19 trang 16 SGK Toán 9 Tập 2
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247