Để giải bài toán bằng cách lập hệ phương trình, chúng ta làm theo các bước sau:
Chọn ẩn và đặt điều kiện cho ẩn
Biểu đạt các đại lượng khác nhau theo ẩn
Dựa vào đề bài toán, lập phương trình theo dạng đã học
Dạng toán chuyển động
Dạng toán kết hợp các đại lượng hình học
Dạng toán làm việc chung 1 tập thể, làm việc cá nhân
Dạng toán nước chảy
Dạng toán tìm số
Dạng toán kết hợp vật lý, hóa học
...
Bài 1: Hình chữ nhật có diện tích là \(100cm\), nếu tăng chiều dài lên \(5cm\), giảm chiều rộng đi \(1cm\) thì diện tích không đổi. Tính chu vi hình chữ nhật ban đầu
Hướng dẫn: Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(a;b(a>b>0)\) theo đề, ta có:
\(\left\{\begin{matrix} ab=100\\ (a+5)(b-1)=100 \end{matrix}\right.\)
Giải hệ phương trình, ta được \(a=20cm; b=5cm\)
Vậy chu vi ban đầu của hình chữ nhật là \(50cm\)
Bài 2: Hai ô tô chạy từ A đến B dài 120km. Mỗi giờ ô tô thứ nhất hơn ô tô thứ 2 là 10km nên đến sớm hơn ô tô thứ hai là 24 phút. Tính vận tốc mỗi ô tô.
Hướng dẫn:
Gọi vận tốc của ô tô thứ nhất và thứ hai lần lượt là \(x;y(km/h)(x>y)\)
Theo đề, ta có:
24 phút \(=\frac{2}{5}\) giờ
\(\left\{\begin{matrix} x-y=10\\ \frac{120}{x}+\frac{2}{5}=\frac{120}{y} \end{matrix}\right.\)
Giải hệ ta tìm được \(x=60km/h,y=50km/h\)
Bài 3: Tìm một số có hai chữ số, biết rằng chữ số hàng đơn vị hơn chữ số hàng chục là 2, tích hai chữ số hơn tổng của chúng là 7
Hướng dẫn:
Gọi số đó là \(\bar{ab},(a,b\epsilon \mathbb{N})\)
Theo đề, ta có hệ phương trình: \(\left\{\begin{matrix} a+2=b\\ ab=a+b+7 \end{matrix}\right.\)\(\Rightarrow \left\{\begin{matrix} a=3\\ b=5 \end{matrix}\right.\)
Vậy, số cần tìm là 35
Bài 1: Tìm một số có ba chữ số, biết rằng khi chia số đó cho 11 ta được thương bằng tổng các chữ số của số bị chia
Hướng dẫn: Gọi số cần tìm là \(\bar{abc}(a,b,c>0; a,b,c \epsilon \begin{Bmatrix} 1;10 \end{Bmatrix})\)
Theo đề, ta có: \(100a+10b+c=11(a+b+c)\)
\(\Leftrightarrow 100a+10b+c=11a+11b+11c\)
\(\Leftrightarrow 89a=b+10c\)
Nếu \(a>1\Rightarrow 89a\) có ít nhất 3 chữ số, mà vế phải là một tổng có hai chữ số.
Vậy \(a=1\)\(\Rightarrow 89=10c+b\)
Mà \(10c+b\) chính là \(\bar{cb}\).
Vậy số cần tìm là 198
Bài 2: Đem một số có hai chữ số nhân với tổng của các chữ số với nhau thì được kết quả là 405. Nếu viết ngược lại bằng cách như vậy thì tích nhận được là 468. Tìm số đó
Hướng dẫn:
Gọi số cần tìm là \(\bar{ab}(a;b\epsilon \mathbb{N})\)
Theo đề, ta có hệ phương trình \(\left\{\begin{matrix} (10a+b).(a+b)=405\\ (10b+a).(b+a)=486 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 10a^2+11ab+b^2=405(1)\\ 10b^2+11ab+a^2=486(2) \end{matrix}\right.\)
Lấy (2) trừ cho (1) ta được: \(b^2-a^2=9\Leftrightarrow (b-a)(a+b)=9\)
Mà a, b là các số tự nhiên, dễ dàng suy ra \(a=4;b=5\)
Vậy số cần tìm là 45
Qua bài giảng Giải bài toán bằng cách lập hệ phương trình này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 9 Bài 5 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 9 Bài 5 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 2
Bài tập 28 trang 22 SGK Toán 9 Tập 2
Bài tập 29 trang 22 SGK Toán 9 Tập 2
Bài tập 30 trang 22 SGK Toán 9 Tập 2
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247