Gồm một vật nhỏ khối lượng m, treo ở đầu dưới một sợi dây không dãn, khối lượng không đáng kể, chiều dài \(l\), đầu trên sợi dây được treo vào điểm cố định.
Các phương trình dao động điều hòa:
Li độ cong: \(s=s_0 cos(\omega t+ \varphi)\) (cm, m)
Li độ góc: \(\alpha=\alpha_0 cos(\omega t+ \varphi)\) (độ, rad)
Chú ý:
Con lắc đơn dao động điều hòa khi góc lệch nhỏ và bỏ qua mọi ma sát.
\(s=l.\alpha\) và \(s_0=l.\alpha_0\) với \(\alpha\) và \(\alpha_0\) có đơn vị rad.
Tần số góc: \(\omega=\sqrt{\frac{g}{l}}\)
Chu kì của con lắc đơn: \(T=2 \pi\sqrt{\frac{l}{g}}\)
Tần số của con lắc đơn: \(f=\frac{1}{2\pi} \sqrt{\frac{g}{l}}\)
Nhận xét: Khi con lắc dao động điều hòa thì chu kì không phụ thuộc khối lượng vật nặng và cũng không phụ thuộc biên độ.
\(W_d= \frac{1}{2}mv^2\)
\(W_t= mgl(1-cos \alpha)\)
\(W= \frac{1}{2}mv^2 + mgl(1-cos \alpha)= mgl(1-cos \alpha_0)=\frac{1}{2}mv_{max}^2\)
Nếu bỏ qua ma sát thì cơ năng của con lắc được bảo toàn.
Chú ý: Công thức đúng với mọi li độ góc \(\alpha\leq 90^0\)
Một con lắc đơn có chiều dài \(l=16cm\). Kéo con lắc lệch khỏi vị trí cân bằng một góc 90 rồi thả nhẹ. Bỏ qua mọi ma sát , lấy g=10 m/s2 , \(\pi^2= 10\). Chọn gốc thời gian lúc thả vật , chiều dương là chiều chuyển động ban đầu của vật. Viết phương trình dao động của vật theo li độ góc.
Ta có: \(\omega=\sqrt{\frac{g}{l}}\)= 2,5 (rad/s), \(cos \varphi=\frac{\alpha}{\alpha_0}=\frac{- \alpha_0}{\alpha_0}= -1=cos \pi \Rightarrow \varphi = \pi (rad)\)
Vậy: \(\alpha= 0,157 cos (2,5\pi+\pi)\) (rad)
Con lắc đơn có chiều dài \(\small l=20 cm\). Tại tại thời điểm t=0, từ vị trí cân bằng con lắc được truyền vận tốc 14 cm/s theo chiều dương của trục tọa độ. Lấy g=9,8 m/s2 . Viết phương trình dao động của con lắc theo li độ dài.
Ta có: \(\small \omega= 7\) rad/s ; \(\small S_0= \frac{v}{\omega}= 2cm; cos \varphi =\frac{s}{S_0}=0=Cos(\pm \frac{\pi}{2})\)
Vì \(\small v> 0\) Nên \(\small \varphi =-\frac{\pi}{2}\)
Vậy \(\small s= 2 cos (7t-\frac{\pi}{2})\) (cm)
Một con lắc đơn dao động điều hoà theo phương trình li độ góc \(\small \alpha=0,1 cos (2\pi t + \frac{\pi}{4})\) (rad). Trong khoảng thời gian 5,25s tính từ thời điểm con lắc bắt đầu dao động, có bao nhiêu lần con lắc có độ lớn vận tốc bằng 1/2 vận tốc cực đại của nó?
Trong một chu kỳ dao động có 4 lần \(v = \frac{{{v_{max}}}}{2}\) tại vị trí \({W_d} = \frac{W}{4} \Rightarrow {W_t} = \frac{3}{4}{W_t}_{max}\)
Tức là lúc li độ
\(\small \alpha=\pm \frac{\alpha_{max} \sqrt{3}}{2}\) với chu kì con lắc đơn đã cho T=1s
ta có \(\small t=5,25 s = 5T+\frac{1}{4}T\)
Khi \(\small t= 0s\) thì \(\small \alpha_0 = 0,1 cos(\frac{\pi}{4})\) = \(\small \frac{\alpha_{max}\sqrt{2}}{2}\) ; vật chuyển động theo chiều âm về VTCB
Sau 5 chu kì vật trở lại vị trí ban đầu, sau T/4 tiếp vật chưa qua được vị trí \(\small \alpha=-\frac{\alpha_{max}\sqrt{3}}{2}\)
Do đó: Trong khoảng thời gian 5,25s tính từ thời điểm con lắc bắt đầu dao động, con lắc có độ lớn vận tốc bằng 1/2 vận tốc cực đại của nó 20 lần.
Qua bài giảng Con lắc đơn này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Cấu tạo của con lắc đơn.
Điều kiện để con lắc đơn dao động điều hoà.
Công thức tính chu kì dao động , thế năng và cơ năng của con lắc đơn.
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Vật lý 12 Bài 3 cực hay có đáp án và lời giải chi tiết.
Câu 5- Câu 12: Xem thêm phần trắc nghiệm để làm thử Online
Các em có thể xem thêm phần hướng dẫn Giải bài tập Vật lý 12 Bài 3 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 3.9 trang 10 SBT Vật lý 12
Bài tập 3.10 trang 10 SBT Vật lý 12
Bài tập 3.11 trang 10 SBT Vật lý 12
Bài tập 3.12 trang 11 SBT Vật lý 12
Bài tập 3.13 trang 11 SBT Vật lý 12
Bài tập 3.14 trang 11 SBT Vật lý 12
Bài tập 3.15 trang 11 SBT Vật lý 12
Bài tập 1 trang 40 SGK Vật lý 12 nâng cao
Bài tập 2 trang 40 SGK Vật lý 12 nâng cao
Bài tập 3 trang 40 SGK Vật lý 12 nâng cao
Bài tập 4 trang 40 SGK Vật lý 12 nâng cao
Bài tập 5 trang 40 SGK Vật lý 12 nâng cao
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Vật lý HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
Copyright © 2021 HOCTAP247