A. \(i=4,4\sqrt{2}\cos \left( 100\pi t+\frac{\pi }{4} \right)(A)\)
B. \(i=4,4\sqrt{2}\cos \left( 100\pi t-\frac{\pi }{4} \right)(A)\)
C. \(i=4,4\cos \left( 100\pi t+\frac{\pi }{4} \right)(A)\)
D. \(i = 4,4\cos \left( {100\pi t - \frac{\pi }{4}} \right)(A)\)
D
Đáp án D
\(C=\frac{{{10}^{-4}}}{\pi }(F)\Rightarrow {{Z}_{C}}=\frac{1}{\omega C}=\frac{1}{100\pi .\frac{{{10}^{-4}}}{\pi }}=100(\Omega )\)
\(L=\frac{3}{2\pi }(H)\Rightarrow {{Z}_{L}}=\omega L=100\pi .\frac{3}{2\pi }=150(\Omega )\)
\(Z=\sqrt{{{R}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}=\sqrt{{{50}^{2}}+{{(150-100)}^{2}}}=50\sqrt{2}(\Omega )\)
\({{I}_{0}}=\frac{{{U}_{0}}}{Z}=\frac{220\sqrt{2}}{50\sqrt{2}}=4,4(A)\)
\(\tan ({{\varphi }_{u}}-{{\varphi }_{i}})=\frac{{{Z}_{L}}-{{Z}_{C}}}{R}=1\to {{\varphi }_{u}}-{{\varphi }_{i}}=\frac{\pi }{4}\to {{\varphi }_{i}}=-\frac{\pi }{4}\).
Vậy \(i=4,4\cos \left( 100\pi t-\frac{\pi }{4} \right)(A)\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247