A. \(\frac{4\pi }{7}\)
B. \(\frac{6\pi }{7}\)
C. \(\frac{3\pi }{7}\)
D. \(\frac{5\pi }{7}\)
A
Điện áp hiệu dụng giữa hai đầu đoạn mạch \(AP\) là:
\({{U}_{AP}}=\frac{U\sqrt{{{\left( R+r \right)}^{2}}+{{Z}_{L}}^{2}}}{\sqrt{{{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}}\)
Để điện áp hiệu dụng giữa hai đầu đoạn mạch \(AP\) không phụ thuộc vào R, ta có:
\({{\left( R+r \right)}^{2}}+{{Z}_{L}}^{2}={{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}\)
\(\Rightarrow {{Z}_{L}}^{2}={{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}\Rightarrow {{Z}_{L}}={{Z}_{C}}-{{Z}_{L}}\Rightarrow {{Z}_{C}}=2{{Z}_{L}}\)
Ta có giản đồ vecto:
Từ giản đồ vecto, ta thấy góc lệch giữa \({{u}_{AP}}\) và \({{u}_{AB}}\) là:
\(\tan \left( 2\alpha \right)=\frac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }=\frac{2.\frac{{{Z}_{L}}}{R+r}}{1-{{\left( \frac{{{Z}_{L}}}{R+r} \right)}^{2}}}\)
\({{\left( \tan 2\alpha \right)}_{\max }}\Rightarrow {{\left( 2\alpha \right)}_{\max }}\Rightarrow {{\alpha }_{\max }}\Rightarrow {{\left( \tan \alpha \right)}_{\max }}\)
\(\Rightarrow {{\left( \frac{{{Z}_{L}}}{R+r} \right)}_{\max }}\Rightarrow {{\left( R+r \right)}_{\min }}\Rightarrow R=0\)
Khi đó ta có:
\({{U}_{1}}={{U}_{BP}}={{U}_{C}}=\frac{U.{{Z}_{C}}}{\sqrt{{{r}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}}=\frac{U.2{{Z}_{L}}}{\sqrt{{{r}^{2}}+{{Z}_{L}}^{2}}}\)
Ta có tích
\({{U}_{AN}}.{{U}_{NP}}=\frac{U.\left( R+r \right)}{\sqrt{{{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}}.\frac{U.{{Z}_{L}}}{\sqrt{{{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}}\)
\(={{U}^{2}}.\frac{{{Z}_{L}}.\left( R+r \right)}{{{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}={{U}^{2}}.{{Z}_{L}}.\frac{1}{\left( R+r \right)+\frac{{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}{R+r}}\)
Đặt \(x=R+r;f\left( x \right)=x+\frac{{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}{x}\Rightarrow {{U}_{AN}}.{{U}_{NP}}={{U}^{2}}.{{Z}_{L}}.\frac{1}{f\left( x \right)}\)
Để tích \({{\left( {{U}_{AN}}.{{U}_{NP}} \right)}_{\max }}\Rightarrow f{{\left( x \right)}_{\min }}\)
Áp dụng bất đẳng thức Cô – si, ta có:
\(x+\frac{{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}{x}\ge 2\sqrt{x.\frac{{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}{x}}=2\left| {{Z}_{L}}-{{Z}_{C}} \right|\)
\(f{{\left( x \right)}_{\min }}\Leftrightarrow x=\frac{{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}{x}\)
\(\Rightarrow {{x}^{2}}={{\left( R+r \right)}^{2}}={{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}={{Z}_{L}}^{2}\)
\(\Rightarrow R={{Z}_{L}}-r\)
Khi đó ta có: \({{U}_{2}}={{U}_{AM}}={{U}_{R}}=\frac{U.R}{\sqrt{{{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}}\)
\(\Rightarrow {{U}_{2}}=\frac{U.\left( {{Z}_{L}}-r \right)}{\sqrt{2{{Z}_{L}}^{2}}}=\frac{U.\left( {{Z}_{L}}-r \right)}{\sqrt{2}{{Z}_{L}}}\)
Theo đề bài ta có:
\({{U}_{1}}=2.\left( \sqrt{6}+\sqrt{3} \right){{U}_{2}}\)
\(\Rightarrow \frac{U.2{{Z}_{L}}}{\sqrt{{{r}^{2}}+{{Z}_{L}}^{2}}}=2.\left( \sqrt{6}+\sqrt{3} \right).\frac{U.\left( {{Z}_{L}}-r \right)}{\sqrt{2}{{Z}_{L}}}\)
\(\Rightarrow \sqrt{2}{{Z}_{L}}^{2}=\left( \sqrt{6}+\sqrt{3} \right).\left( {{Z}_{L}}-r \right).\sqrt{{{r}^{2}}+{{Z}_{L}}^{2}}\)
\(\Rightarrow {{Z}_{L}}^{2}=\frac{\sqrt{6}+\sqrt{3}}{\sqrt{2}}.\left( {{Z}_{L}}-r \right).\sqrt{{{r}^{2}}+{{Z}_{L}}^{2}}\)
\(\Rightarrow {{\left( \frac{{{Z}_{L}}}{r} \right)}^{2}}=\frac{\sqrt{6}-\sqrt{3}}{\sqrt{2}}.\left( \frac{{{Z}_{L}}}{r}-1 \right).\sqrt{1+\frac{{{Z}_{L}}^{2}}{{{r}^{2}}}}\left( 1 \right)\)
Đặt \(\tan \alpha =\frac{{{Z}_{L}}}{r}\), thay vào phương trình (1), ta có:
\({{x}^{2}}=\frac{\sqrt{6}+\sqrt{3}}{\sqrt{2}}\left( x-1 \right)\sqrt{1+{{x}^{2}}}\Rightarrow x=\tan \alpha \approx 1.377\)\(\Rightarrow \alpha \approx {{54}^{0}}\Rightarrow 2\alpha ={{108}^{0}}\)
Góc \({{108}^{0}}\) có giá trị gần nhất với góc \(\frac{4\pi }{7}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247