A. \({{u}_{C}}=300\cos \left( 100\pi t-\frac{\pi }{12} \right)V\)
B. \({{u}_{C}}=100\sqrt{2}\cos (100\pi t)V\)
C. \({{u}_{C}}=300\cos \left( 100\pi t-\frac{5\pi }{12} \right)V\)
D. \({{u}_{C}}=100\sqrt{2}\cos \left( 100\pi t-\frac{\pi }{2} \right)V\) .
C
Khi L thay đổi để \({{\text{U}}_{\text{Lmax}}},\) ta có:
\({{U}_{C}}{{U}_{L\max }}=U_{L\max }^{2}-{{U}^{2}}\) \(\Rightarrow {{U}_{C}}=\frac{U_{L\max }^{2}-{{U}^{2}}}{{{U}_{L\max }}}=\frac{{{\left( 200\sqrt{2} \right)}^{2}}-{{\left( 100\sqrt{2} \right)}^{2}}}{200\sqrt{2}}=\frac{300}{\sqrt{2}}(V)\)
\(\Rightarrow {{U}_{0C}}={{U}_{C}}\sqrt{2}=300(V)\)
Lại có: \(\overrightarrow{U}\bot \overrightarrow{{{U}_{RC}}}\Rightarrow {{\varphi }_{RC}}={{\varphi }_{u}}-\frac{\pi }{2}=-\frac{\pi }{4}(rad)\)
Mà \({{\varphi }_{C}}<{{\varphi }_{RC}}\Rightarrow {{\varphi }_{C}}<-\frac{\pi }{4}\Rightarrow {{\varphi }_{C}}=-\frac{5\pi }{12}(rad)\)
\(\Rightarrow {{u}_{C}}=300\cos \left( 100\pi t-\frac{5\pi }{12} \right)(V)\)
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247