Trang chủ Đề thi & kiểm tra Khác Khoảng cách và góc !! Trong mặt phẳng với hệ tọa độ Oxy, cho tam...

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3;−4), B(1;5) và C(3;1). Tính diện tích tam giác ABC.Cách 1:+) Viết phương trình BCBC:Ta có: [ overrightarrow {BC} = left(...

Câu hỏi :

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3;−4), B(1;5) và C(3;1). Tính diện tích tam giác ABC.

A.10.

B.5.

C.\[\sqrt {26} .\]

D. \[2\sqrt 5 .\]

* Đáp án

* Hướng dẫn giải

Cách 1:

+) Viết phương trình BCBC:

Ta có:\[\overrightarrow {BC} = \left( {2; - 4} \right)\] nên\[\overrightarrow {{u_{BC}}} = \frac{1}{2}\overrightarrow {BC} = \left( {1; - 2} \right)\] là VTCP của BC, do đó\[\overrightarrow {{n_{BC}}} = \left( {2;1} \right)\]

Đường thẳng BC đi qua B(1;5) và nhận\[\overrightarrow {{n_{BC}}} = \left( {2;1} \right)\] làm VTPT nên:

\[BC:2\left( {x - 1} \right) + 1\left( {y - 5} \right) = 0\] hay\[BC:2x + y - 7 = 0\]

Suy ra

\(\left\{ {\begin{array}{*{20}{c}}{A(3; - 4)}\\{B(1;5),C(3;1)}\end{array}} \right. \to \left\{ {\begin{array}{*{20}{c}}{A(3; - 4)}\\{BC = 2\sqrt 5 }\\{BC:2x + y - 7 = 0}\end{array}} \right.\)

\( \to \left\{ {\begin{array}{*{20}{c}}{BC = 2\sqrt 5 }\\{hA = d(A;BC) = \sqrt 5 }\end{array}} \right.\)

\[ \to {S_{ABC}} = \frac{1}{2}.2\sqrt 5 .\sqrt 5 = 5.\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Khoảng cách và góc !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247