Cho đường thẳng ( Delta ) : 3x − 2y + 1 = 0 . Viết PTĐT (d) đi qua điểm M(1;2) và tạo với (Delta) một góc 45 độ

Câu hỏi :

Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\]Viết PTĐT (d)  đi qua điểm M(1;2)  và  tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)

A.\[x - 5y + 9 = 0\]

B. \[x - 5y + 9 = 0\]hoặc \[5x + y - 7 = 0\]

C.\[5x + y + 7 = 0\]

D.\[x - 5y + 19 = 0\;\] hoặc \[ - 5x + y + 7 = 0\]

* Đáp án

* Hướng dẫn giải

+) TH1: (d) không có hệ số góc.

Khi đó phương trình (d) có dạng: x – c = 0.

(d) đi qua M(1;2) nên x – 1 = 0 nên có VTPT\[\vec n = \left( {1;0} \right)\]

\[ \Rightarrow \cos \left( {d,{\rm{\Delta }}} \right) = \frac{{\left| {\overrightarrow {{n_{\rm{\Delta }}}} .\overrightarrow {{n_d}} } \right|}}{{\left| {\overrightarrow {{n_{\rm{\Delta }}}} } \right|.\left| {\overrightarrow {{n_d}} } \right|}} = \frac{{\left| {3.1 - 2.0} \right|}}{{\sqrt {{3^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{1^2} + {0^2}} }} = \frac{1}{{\sqrt {13} }} \ne \frac{{\sqrt 2 }}{2} = \cos {45^0}\]

Do đó đường thẳng này không thỏa mãn bài toán.

+) TH2: (d) có hệ số góc.

PTĐT (d)được viết dưới dạng:\[y - 2 = k\left( {x - 1} \right) \Leftrightarrow kx - y + 2 - k = 0\]

Vì (d) hợp với \[(\Delta )\;\]một góc \[{45^0}\] nên:\[{\rm{cos}}{45^0} = \frac{{|3k + ( - 1).( - 2)|}}{{\sqrt {{k^2} + 1} .\sqrt {{3^2} + {{( - 2)}^2}} }}\]

\[ \Leftrightarrow \frac{{\sqrt 2 }}{2} = \frac{{|3k + 2|}}{{\sqrt {13} .\sqrt {{k^2} + 1} }} \Leftrightarrow \frac{2}{4} = \frac{{9{k^2} + 12k + 4}}{{13.({k^2} + 1)}}\]

\[ \Leftrightarrow 5{k^2} + 24k - 5 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{k = \frac{1}{5}}\\{k = - 5}\end{array}} \right.\]

Vậy phương trình (d) là: \[\frac{1}{5}x - y + 2 - \frac{1}{5} = 0 \Leftrightarrow x - 5y + 9 = 0\] hay

\[ - 5x - y + 2 - ( - 5) = 0 \Leftrightarrow 5x + y - 7 = 0\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Khoảng cách và góc !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247