Cho đường thẳng d có ptts:

Câu hỏi :

Cho đường thẳng d có ptts: \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + 2t}\\{y = 3 + t}\end{array}} \right.;t \in R\). Tìm điểm \[M \in d\;\] sao cho khoảng cách từ M đến điểm A(0;1) một khoảng bằng 5.

A.M(−4;4)  hoặc \[M\left( {\frac{{ - 24}}{5};\frac{{ - 2}}{5}} \right)\]

B. \[M\left( {\frac{{ - 24}}{5};\frac{{ - 2}}{5}} \right)\]

C.M(−4;4)

D.M(4;4) hoặc \[M\left( {\frac{{ - 24}}{5};\frac{{ - 2}}{5}} \right)\]

* Đáp án

* Hướng dẫn giải

Điểm \[M \in d\;\] nên tọa độ của M  phải thỏa mãn phương trình của d.

Gọi \[M(2 + 2t;3 + t) \in d\]

Ta có\[\overrightarrow {AM} = (2 + 2t;2 + t)\]

Theo giả thiết:\[\overrightarrow {\left| {AM} \right|} = 5 \Leftrightarrow \sqrt {{{(2 + 2t)}^2} + {{(2 + t)}^2}} = 5\]

\[ \Leftrightarrow {(2 + 2t)^2} + {(2 + t)^2} = 25\]\[ \Leftrightarrow 5{t^2} + 12t - 17 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = 1}\\{t = \frac{{ - 17}}{5}}\end{array}} \right.\]

Vậy có 2  điểm M  thỏa ycbt M1(4;4) và\[{M_2}(\frac{{ - 24}}{5};\frac{{ - 2}}{5})\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Khoảng cách và góc !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247