Trang chủ Đề thi & kiểm tra Khác Khoảng cách và góc !! Trong mặt phẳng với hệ trục tọa độ Oxy, cho...

Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng (d):3x - 4y - 12 = 0Phương trình đường thẳng

Câu hỏi :

Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?

A.\[a + b = 6\]

B.\[a + b = - 8\]

C.\[a + b = 8\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;\;\]

D.\[a + b = - 6\]

* Đáp án

* Hướng dẫn giải

Đường thẳng (d) có VTPT\[\overrightarrow {{n_1}} = \left( {3; - 4} \right)\]

Đường thẳng \[\left( {\rm{\Delta }} \right)\]có VTPT\[\overrightarrow {{n_2}} = \left( {a;b} \right)\]

\[ \Rightarrow cos(d;\Delta ) = cos\left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right) = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{|3a - 4b|}}{{5\sqrt {{a^2} + {b^2}} }}\]

\[ \Leftrightarrow cos{45^o} = \frac{{|3a - 4b|}}{{5\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \frac{{|3a - 4b|}}{{5\sqrt {{a^2} + {b^2}} }} = \frac{{\sqrt 2 }}{2}\]

\[ \Leftrightarrow \sqrt 2 |3a - 4b| = 5\sqrt {{a^2} + {b^2}} \Leftrightarrow 2{(3a - 4b)^2} = 25({a^2} + {b^2})\]

\[ \Leftrightarrow 7{a^2} + 48ab - 7{b^2} = 0(1)\]

Mặt khác\[M\left( {2; - 1} \right) \in {\rm{\Delta }} \Rightarrow 2a - b + 5 = 0 \Leftrightarrow b = 2a + 5\]thế vào (1)

\[ \Rightarrow 7{a^2} + 48a(2a + 5) - 7{(2a + 5)^2} = 0 \Leftrightarrow 75{a^2} + 100a\]

\[ - 175 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a = 1 \Rightarrow b = 7(tm)}\\{a = - \frac{7}{3} \Rightarrow b = \frac{1}{3}(ktm)}\end{array}} \right.\]

\[ \Rightarrow a + b = 8.\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Khoảng cách và góc !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247