Trang chủ Đề thi & kiểm tra Khác Khoảng cách và góc !! Trong mặt phẳng với hệ trục tọa độ Oxy, cho...

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là 2x - y + 3 = 02x - y + 3 = 0 và tọa độ một đỉnh là (2;3). Diệ...

Câu hỏi :

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là \[2x - y + 3 = 02x - y + 3 = 0;\;\] và tọa độ một đỉnh là (2;3). Diện tích hình chữ nhật đó là: 

A.\[\frac{{12}}{{\sqrt 5 }}\] (đvdt)

B.\[\frac{{16}}{5}\] (đvdt)

C.\[\frac{9}{5}\] (đvdt)

D.\[\frac{{12}}{5}\] (đvdt)

* Đáp án

* Hướng dẫn giải

Ta thấy\[{d_1}:\,\,\,2x - y + 3 = 0;\,\,\,{d_2}:\,\,\,x + 2y - 5 = 0\]là hai đường thẳng vuông góc.

Giả sử hình chữ nhật bài cho là ABCD có: 

\[AB:\,\,\,2x - y + 3 = 0;\,\,\,AD:\,\,\,x + 2y - 5 = 0\]

Thay tọa độ điểm (2;3) vào các phương trình đường thẳng AB,AD ta thấy (2;3) không thuộc các đường thẳng trên ⇒C(2;3).

\[ \Rightarrow {S_{ABCD}} = CB.CD = d(C;AB).d(C;AD)\]

\[\begin{array}{l} = \frac{{\left| {2.2 - 3 + 3} \right|}}{{\sqrt {{2^2} + {1^2}} }}.\frac{{\left| {2 + 2.3 - 5} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{4}{{\sqrt 5 }}.\frac{3}{{\sqrt 5 }} = \frac{{12}}{5}\,\,\,\left( {dvdt} \right)\\\end{array}\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Khoảng cách và góc !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247