Trang chủ Đề thi & kiểm tra Khác Khoảng cách và góc !! Trong mặt phẳng với hệ tọa độ Oxy, cho đường...

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng đi qua hai điểm A(1;2), B(4;6), tìm tọa độ điểm M trên trục Oy sao cho diện tích

Câu hỏi :

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng đi qua hai điểm A(1;2), B(4;6), tìm tọa độ điểm M trên trục Oy sao cho diện tích \[\Delta MAB\] bằng 1.

A.(0;0) và (−1;0).

B.(0;0) và \[\left( {0;\frac{4}{3}} \right).\]

C.(0;−1) và \[\left( {0;\frac{4}{3}} \right)\]

D.\[\left( {0;\frac{2}{3}} \right)\] và \[\left( { - \frac{1}{2};0} \right)\]

* Đáp án

* Hướng dẫn giải

Gọi \[M\left( {0;m} \right) \in Oy;\,\,AB = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {6 - 2} \right)}^2}} = 5.\]

Có \[{S_{{\rm{\Delta }}MAB}} = \frac{1}{2}d\left( {M,AB} \right).AB \Leftrightarrow 1 = \frac{1}{2}.d\left( {M,AB} \right).5 \Leftrightarrow d\left( {M,AB} \right) = \frac{2}{5}\]

\[\overrightarrow {AB} = \left( {3;4} \right) \Rightarrow \vec n = \left( {4; - 3} \right)\] là 1 VTPT của  AB.

⇒ Phương trình AB: \[4\left( {x - 1} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 4x - 3y + 2 = 0\]\[ \Rightarrow d\left( {M,AB} \right) = \frac{{\left| { - 3m + 2} \right|}}{{\sqrt {{4^2} + {3^2}} }} \Leftrightarrow \frac{2}{5} = \frac{{\left| { - 3m + 2} \right|}}{5} \Leftrightarrow \left| { - 3m + 2} \right| = 2\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - 3m + 2 = 2}\\{ - 3m + 2 = - 2}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0 \Rightarrow M(0;0)}\\{m = \frac{4}{3} \Rightarrow M\left( {0;\frac{4}{3}} \right)}\end{array}} \right.\)

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Khoảng cách và góc !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247