Trang chủ Đề thi & kiểm tra Khác Phương trình đường tròn !! Trong mặt phẳng với hệ trục tọa độ Oxy, cho...

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường thẳng

Câu hỏi :

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường thẳng \[{d_1}:x + y + 5 = 0,{d_2}:x + 2y - 7 = 0\]  và tam giác ABC có A(2;3), trọng tâm là G(2;0), điểm BB thuộc d1  và điểm CC thuộc d2. Viết phương trình đường tròn ngoại tiếp tam giác ABC.

A.\[{x^2} + {y^2} - \frac{{83}}{{27}}x + \frac{{17}}{9}y + \frac{{338}}{{27}} = 0\]

B. \[{x^2} + {y^2} - \frac{{83}}{{54}}x + \frac{{17}}{{18}}y - \frac{{338}}{{27}} = 0\]

C. \[{x^2} + {y^2} + \frac{{83}}{{27}}x + \frac{{17}}{9}y - \frac{{338}}{{27}} = 0\]

D. \[{x^2} + {y^2} - \frac{{83}}{{27}}x + \frac{{17}}{9}y - \frac{{338}}{{27}} = 0\]

* Đáp án

* Hướng dẫn giải

- Điểm B thuộc \[{d_1}:x + y + 5 = 0\] nên ta giả sử B(b;−b−5)

Điểm C thuộc \[{d_2}:x + 2y - 7 = 0\] nên ta giả sử C(7−2c,c)

Vì tam giác ABC có A(2;3), trọng tâm là G(2;0) nên ta có hệ phương trình

\(\left\{ {\begin{array}{*{20}{c}}{2 + b + 7 - 2c = 6}\\{3 - b - 5 + c = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{b - 2c = - 3}\\{ - b + c = 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{c = 1}\\{b = - 1}\end{array}} \right.\)

Suy ra B(−1;−4) và C(5;1)

- Giả sử phương trình đường tròn cần lập có dạng\[{x^2} + {y^2} + 2ax + 2by + c = 0\] Vì đường tròn qua 3 điểm  A(2;3), B(−1;−4) và C(5;1) nên ta có hệ phương trình:

\(\left\{ {\begin{array}{*{20}{c}}{4a + 6b + c = - 13}\\{ - 2a - 8b + c = - 17}\\{10a + 2b + c = - 26}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 83}}{{54}}}\\{b = \frac{{17}}{{18}}}\\{c = - \frac{{338}}{{27}}}\end{array}} \right.\)

Vậy phương trình đường tròn là:

\[\begin{array}{*{20}{l}}{{x^2} + {y^2} + 2.\left( { - \frac{{83}}{{54}}} \right)x + 2.\left( {\frac{{17}}{{18}}} \right)y - \frac{{338}}{{27}} = 0}\\{ \Leftrightarrow {x^2} + {y^2} - \frac{{83}}{{27}}x + \frac{{17}}{9}y - \frac{{338}}{{27}} = 0}\end{array}\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình đường tròn !!

Số câu hỏi: 31

Copyright © 2021 HOCTAP247