Trong mặt phẳng Oxy cho đường thẳng

Câu hỏi :

Trong mặt phẳng Oxy cho đường thẳng \[(d):3x - 4y + 5 = 0\] và đường tròn \[(C):\;{x^2} + {y^2} + 2x - 6y + 9 = 0.\]. Tìm những điểm M thuộc (C) và N thuộc (d) sao cho MN có độ dài nhỏ nhất.

A.\[M\left( { - \frac{{11}}{5};\frac{{23}}{5}} \right),N\left( {\frac{1}{5};\frac{7}{5}} \right)\]

B. \[M\left( { - \frac{2}{5};\frac{{11}}{5}} \right),N\left( {\frac{1}{5};\frac{7}{5}} \right)\]

C. \[M\left( { - \frac{2}{5};\frac{{11}}{5}} \right),N\left( {1;2} \right)\]

D. \[M\left( { - \frac{{11}}{5};\frac{{23}}{5}} \right),N\left( {1;2} \right)\]Trả lời:

* Đáp án

* Hướng dẫn giải

 Trong mặt phẳng Oxy cho đường thẳng \[(d):3x - 4y + 5 = 0\] và đường tròn \[(C):\;{x^2} + {y^2} + 2x - 6y + 9 = 0.\]. Tìm những điểm M thuộc (C) và N thuộc (d) sao cho MN có độ dài nhỏ nhất. (ảnh 1)

Đường tròn (C) có tâm I(−1;3) và bán kính\[R = \sqrt {{{\left( { - 1} \right)}^2} + {3^2} - 9} = 1\]

Ta có:\[d(I;d) = \frac{{\left| {3.\left( { - 1} \right) - 4.3 + 5} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 2 >R\]

Suy ra d không cắt (C).

Ta có \[IM + MN \ge IN \Leftrightarrow MN \ge IN - R\]

MN min  ⇔  IN đạt min ⇔⇔ N là chân hình chiếu vuông góc của I xuống đường thẳng d.

Giả sử N(a;b). Vì \[N \in d\] nên ta có \[3a - 4b + 5 = 0\] (1)

Mặt khác, ta có: IN vuông góc với d nên \[\overrightarrow {IN} .\overrightarrow {{u_d}} = 0\] Mà

\[\overrightarrow {IN} = \left( {a + 1;b - 3} \right),\overrightarrow {{u_d}} = \left( {4;3} \right)\]  Suy ra ta có:

\[4(a + 1) + 3(b - 3) = 0 \Leftrightarrow 4a + 3b - 5 = 0\]  (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{4a + 3b - 5 = 0}\\{3a - 4b + 5 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = \frac{1}{5}}\\{b = \frac{7}{5}}\end{array}} \right. \Rightarrow N\left( {\frac{1}{5},\frac{7}{5}} \right)\)Vì d(I;d)=2R nên M là trung điểm của IN. Do đó, tọa độ của M là:

\(\left\{ {\begin{array}{*{20}{c}}{{x_M} = \frac{1}{2}\left( { - 1 + \frac{1}{5}} \right) = - \frac{2}{5}}\\{{y_M} = \frac{1}{2}\left( {3 + \frac{7}{5}} \right) = \frac{{11}}{5}}\end{array}} \right. \Rightarrow M\left( { - \frac{2}{5};\frac{{11}}{5}} \right)\)

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình đường tròn !!

Số câu hỏi: 31

Copyright © 2021 HOCTAP247