A.\[p + q = {m^3}\]
B. \[p = {m^3} + 3mn\]
C. \[p = {m^3} - 3mn\]
D. Một đáp số khác.
Gọi \[{x_1},{x_2}\] là nghiệm của \[{x^2}\; + px + q = 0\]
Gọi \[{x_3},{x_4}\] là nghiệm của\[{x^2}\; + mx + n = 0\]
- Khi đó, theo vi-et: \[{x_1} + {x_2} = - p,{x_3} + {x_4} = - m,{x_3}.{x_4} = n\]
- Theo yêu cầu ta có:
\(\left\{ {\begin{array}{*{20}{c}}{{x_1} = {x_3}^3}\\{{x_2} = {x_4}^3}\end{array}} \right. \Rightarrow {x_1} + {x_2} = {x_3}^3 + {x_4}^3 \Leftrightarrow {x_1} + {x_2} = {\left( {{x_3} + {x_4}} \right)^3} - 3{x_3}{x_4}\left( {{x_3} + {x_4}} \right)\)
\[ \Rightarrow - p = - {m^3} + 3mn \Rightarrow p = {m^3} - 3mn\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247