A.−1
B.0
C.1
D.Một đáp số khác
Gọi \[{x_1};{x_2}\] là nghiệm của phương trình\[{x^2} - 2mx + 1 = 0\;\] khi đó\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2m}\\{{x_1}.{x_2} = 1}\end{array}} \right.\)
Gọi \[{x_3};{x_4}\] là nghiệm của phương trình\[{x^2} - 2x + m = 0\] khi đó \(\left\{ {\begin{array}{*{20}{c}}{{x_3} + {x_4} = 2}\\{{x_3}.{x_4} = m}\end{array}} \right.\)
Ta có:\(\left\{ {\begin{array}{*{20}{c}}{{x_1} = \frac{1}{{{x_3}}}}\\{{x_2} = \frac{1}{{{x_4}}}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = \frac{1}{{{x_3}}} + \frac{1}{{{x_4}}}}\\{{x_1}.{x_2} = \frac{1}{{{x_3}.{x_4}}}}\end{array}} \right.\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = \frac{{{x_3} + {x_4}}}{{{x_3}.{x_4}}}}\\{{x_1}.{x_2} = \frac{1}{{{x_3}.{x_4}}}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{2m = \frac{2}{m}}\\{1 = \frac{1}{m}}\end{array}} \right. \Leftrightarrow m = 1\)
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247