Tìm tất cả các gía trị thực của tham số mm sao cho phương trình (m - 1)x^2 - 2(m + 1)x + m + 4 = 0 có hai nghiệm dương phân biệt.

Câu hỏi :

Tìm tất cả các gía trị thực của tham số mm sao cho phương trình \[\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\] có hai nghiệm dương phân biệt.

A. m < −4 hoặc 1 < m < 5   

B. m <− 1 hoặc −4 < m < 5                                            

C.1 < m < 5          

D.−4 < m < 5

* Đáp án

* Hướng dẫn giải

Phương trình \[\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\]có hai nghiệm dương phân biệt khi và chỉ khi

\(\left\{ {\begin{array}{*{20}{c}}{a \ne 0}\\{\Delta >0}\\{P >0}\\{S >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m - 1 \ne 0\,\,\,\,\,\,\,\,\,\,(1)}\\{4{{(m + 1)}^2} - 4(m - 1)(m + 4) >0\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)}\\{\frac{{m + 4}}{{m - 1}} >0\,\,\,\,\,\,\,\,(3)}\\{\frac{{m + 1}}{{m - 1}} >0\,\,\,\,\,\,\,\,(4)}\end{array}} \right.\)

Giải (1):\[m - 1 \ne 0 \Leftrightarrow m \ne 1\]

Giải (2):

\[4{(m + 1)^2} - 4(m - 1)(m + 4) >0\]

\[ \Leftrightarrow (4{m^2} + 8m + 4) - (4m - 4)(m + 4) >0\]

\[ \Leftrightarrow 4{m^2} + 8m + 4 - 4{m^2} - 16m + 4m + 16 >0\]

\[ \Leftrightarrow - 4m + 20 >0\]

\[ \Leftrightarrow m < 5\]

Giải (3):

\(\frac{{m + 4}}{{m - 1}} >0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m + 4 >0}\\{m - 1 >0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m + 4 >0}\\{m - 1 < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m >- 4}\\{m >1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m < - 4}\\{m < 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m >1}\\{m < - 4}\end{array}} \right.\)

Giải (4):

\(\frac{{m + 1}}{{m - 1}} >0\, \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m + 1 >0}\\{m - 1 >0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m + 1 < 0}\\{m - 1 < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m >- 1}\\{m >1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{m < 1}\end{array}} \right.}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m >1}\\{m < - 1}\end{array}} \right.} \right.\)

Kết hợp cả 4 điều kiện ta được m < −4 hoặc 1 < m < 5.

Đáp án cần chọn là: A

</></></></></></></></>

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình bậc nhất và bậc hai một ẩn !!

Số câu hỏi: 20

Copyright © 2021 HOCTAP247