Phương pháp giải:
Tính nguyên hàm bằng phương pháp đổi biến, đặt \(u = 2 + \sin x\).
Giải chi tiết:
\(f'\left( x \right) = \frac{{{\rm{cos}}{\mkern 1mu} x}}{{{{\left( {2 + \sin {\mkern 1mu} x} \right)}^2}}} \Rightarrow f\left( x \right) = \int {\frac{{{\rm{cos}}{\mkern 1mu} x}}{{{{\left( {2 + \sin {\mkern 1mu} x} \right)}^2}}}} {\mkern 1mu} dx\)
Đặt \(u = 2 + \sin {\mkern 1mu} x \Rightarrow du = {\rm{cos}}{\mkern 1mu} xdx\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247