Phương pháp giải:
- Xác định góc giữa \(A'A\)và \(\left( {ABC} \right)\) là góc giữa \(A'A\) và hình chiếu của \(A'A\) lên \(\left( {ABC} \right)\).
- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính chiều cao của lăng trụ.
- Thể tích khối lăng trụ \(V = Bh\) với \(B,{\mkern 1mu} {\mkern 1mu} h\) lần lượt là diện tích đáy và chiều cao của lăng trụ.
Giải chi tiết:
Gọi \(H\) là trung điểm của \(AB\)\( \Rightarrow A'H \bot \left( {ABC} \right)\).
\( \Rightarrow AH\) là hình chiếu vuông góc của \(A'A\) lên \(\left( {ABC} \right)\).
\( \Rightarrow \angle \left( {A'A;\left( {ABC} \right)} \right) = \angle \left( {A'A;AH} \right) = \angle A'AH = {60^0}\).
Xét tam giác vuông \(A'AH\) ta có : \(A'H = AH\tan \angle A'AH = \frac{{AB}}{2}\tan {60^0} = \frac{{a\sqrt 3 }}{2}\).
Diện tích đáy \({S_{ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\) (do \(\Delta ABC\) đều cạnh \(a\)).
Vậy thể tích khối lăng trụ là: \(V = {S_{ABC}}.A'H = \frac{{{a^2}\sqrt 3 }}{4}.\frac{{a\sqrt 3 }}{2} = \frac{{3{a^3}}}{8}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247