Cho khối lăng trụ (ABC.A'B'C') có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A' trên mặt phẳng

Câu hỏi :

Cho khối lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\), hình chiếu vuông góc của \(A'\) trên mặt phẳng \(\left( {ABC} \right)\) trùng với trung điểm của cạnh \(AB\), góc giữa đường thẳng \(A'A\) và mặt phẳng \(\left( {ABC} \right)\) bằng \[{60^0}\]. Thể tích khối lăng trụ \[ABC.A'B'C'\] bằng

A. \[\frac{{3{a^3}}}{8}\]

B. \[\frac{{{a^3}\sqrt 3 }}{2}\]

C. \[\frac{{{a^3}}}{8}\]

D. \[\frac{{{a^3}\sqrt 3 }}{4}\]

* Đáp án

* Hướng dẫn giải

Phương pháp giải:

- Xác định góc giữa \(A'A\)\(\left( {ABC} \right)\) là góc giữa \(A'A\) và hình chiếu của \(A'A\) lên \(\left( {ABC} \right)\).

- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính chiều cao của lăng trụ.

- Thể tích khối lăng trụ \(V = Bh\) với \(B,{\mkern 1mu} {\mkern 1mu} h\) lần lượt là diện tích đáy và chiều cao của lăng trụ.

Giải chi tiết:

Cho khối lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh (ảnh 1)

Gọi \(H\) là trung điểm của \(AB\)\( \Rightarrow A'H \bot \left( {ABC} \right)\).

\( \Rightarrow AH\) là hình chiếu vuông góc của \(A'A\) lên \(\left( {ABC} \right)\).

\( \Rightarrow \angle \left( {A'A;\left( {ABC} \right)} \right) = \angle \left( {A'A;AH} \right) = \angle A'AH = {60^0}\).

Xét tam giác vuông \(A'AH\) ta có : \(A'H = AH\tan \angle A'AH = \frac{{AB}}{2}\tan {60^0} = \frac{{a\sqrt 3 }}{2}\).

Diện tích đáy \({S_{ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\)  (do \(\Delta ABC\) đều cạnh \(a\)).

Vậy thể tích khối lăng trụ là: \(V = {S_{ABC}}.A'H = \frac{{{a^2}\sqrt 3 }}{4}.\frac{{a\sqrt 3 }}{2} = \frac{{3{a^3}}}{8}\).

Copyright © 2021 HOCTAP247