Phương pháp giải:
- Đường thẳng đi qua hai điểm \(A,{\mkern 1mu} {\mkern 1mu} B\) nhận là 1 VTCP. Mọi vectơ cùng phương với \[\overrightarrow {AB} \] đều là 1 VTCP của đường thẳng.
- Phương trình đường thẳng đi qua \[M\left( {{x_0};{y_0};{z_0}} \right)\] và có 1 VTCP \[\vec u\left( {a;b;c} \right)\] là \[\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\].
Giải chi tiết:
Ta có: , do đó đường thẳng \[AB\] nhận \(\vec u = \left( {2; - 1; - 1} \right) = \frac{1}{2}\overrightarrow {AB} \) là 1 VTCP.
Phương trình đường thẳng đi qua \(B\left( {1; - 1;0} \right)\) và có 1 VTCP \(\vec u = \left( {2; - 1; - 1} \right)\) là \(\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{z}{{ - 1}}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247