Cho hàm số y = f( x ) = ax^3 + bx^2 + cx + d với a khác 0 có đồ thị như hình vẽ sau

Câu hỏi :

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) với a0 có đồ thị như hình vẽ sau. Điểm cực đại của đồ thị hàm số \(y = f\left( {4 - x} \right) + 1\) là:
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) với (ảnh 1)

A. \(\left( { - 3;4} \right)\)

B. \(\left( {3;2} \right)\)

C. \(\left( {5;8} \right)\)

D. \(\left( {5;4} \right)\)

* Đáp án

* Hướng dẫn giải

Phương pháp giải:

- Tính đạo hàm của hàm số \(y = f\left( {4 - x} \right) + 1\).

- Giải phương trình \(y' = 0\).

- Lập BBT hàm số \(y = f\left( {4 - x} \right) + 1\) và kết luận điểm cực đại của hàm số.

Giải chi tiết:

Ta có: y=f(4-x)+1

y'=0f'(4-x)=0[4-x=-14-x=1[x=5x=3.

Ta có BBT hàm số \(y = f\left( {4 - x} \right) + 1\) như sau:

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) với (ảnh 2)

Dựa vào BBT ta có \({x_{CD}} = 5\)\( \Rightarrow {y_{CD}} = f\left( { - 1} \right) + 1 = 3 + 1 = 4\).

Vậy điểm cực đại của đồ thị hàm số \(y = f\left( {4 - x} \right) + 1\) \(\left( {5;4} \right).\)

Copyright © 2021 HOCTAP247