Phương pháp giải:
- Nhân cả hai vế của phương trình \(f\left( {{x^2} + 3x + 1} \right) = x + 2\) với \(2x + 3\).
- Lấy tích phân từ 0 đến 1 hai vế phương trình.
- Sử dụng phương pháp đổi biến số.
Giải chi tiết:
Theo bài ra ta có \(f\left( {{x^2} + 3x + 1} \right) = x + 2\)
\( \Rightarrow f\left( {{x^2} + 3x + 1} \right)\left( {2x + 3} \right) = \left( {x + 2} \right)\left( {2x + 3} \right)\)
Đặt \(t = {x^2} + 3x + 1 \Rightarrow dt = \left( {2x + 3} \right)dx\)
Đổi cận: \(\left\{ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow t = 1}\\{x = 1 \Rightarrow t = 5}\end{array}} \right.\).
.
Vậy
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247