Phương pháp giải:
- Tính số phần tử của không gian mẫu .
- Gọi A là biến cố: “chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2”, xét 2 TH:
+ TH1: 3 số được chọn cùng là số chẵn.
+ TH2: 3 số được chọn có 1 số chẵn và 2 số lẻ.
Từ đó tính số phần tử của biến cố A là \(n\left( A \right)\).
- Tính xác suất của biến cố A: .
Giải chi tiết:
Số phần tử của không gian mẫu là: \(C_{100}^3\).
Từ 1 đến 100 có \(\left( {100 - 2} \right):2 + 1 = 50\) số chẵn và 50 số lẻ.
Gọi A là biến cố: “chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2”, xét 2 TH:
+ TH1: 3 số được chọn cùng là số chẵn \( \Rightarrow \) Có \(C_{50}^3\) cách.
+ TH2: 3 số được chọn có 1 số chẵn và 2 số lẻ \( \Rightarrow \) Có \(C_{50}^2.C_{50}^1\) cách.
\( \Rightarrow n\left( A \right) = C_{50}^3 + C_{50}^2.C_{50}^1 = 80850\).
Vậy xác suất của biến cố A là: .
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247