Tất cả các giá trị thực của tham số m để hàm số y = x^3 - 3x^2 + mx + 5 có hai điểm cực trị là:

Câu hỏi :

Tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + mx + 5\) có hai điểm cực trị là:

* Đáp án

* Hướng dẫn giải

Đáp án: \(m < 3\)

Phương pháp giải:

Hàm số \(y = f\left( x \right)\) có hai điểm cực trị khi và chỉ khi phương trình \(f'\left( x \right) = 0\) có hai nghiệm phân biệt.

Giải chi tiết:

TXĐ: \(D = \mathbb{R}\). Ta có \(y' = 3{x^2} - 6x + m\).

Để hàm số đã cho có 2 điểm cực trị thì phương trình \(y' = 0\) phải có 2 nghiệm phân biệt.

\( \Leftrightarrow \Delta ' > 0\)\( \Leftrightarrow {3^2} - 3m > 0 \Leftrightarrow 9 - 3m > 0\)\( \Leftrightarrow m < 3\).

Copyright © 2021 HOCTAP247