Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn các số phức z thỏa mãn điều kiện

Câu hỏi :

Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn các số phức z thỏa mãn điều kiện \(2|z - 1 - 2i| = |3i + 1 - 2\bar z|\) là đường thẳng có dạng \(ax + by + c = 0\), với \(b,c\) nguyên tố cùng nhau. Tính \(P = a + b\)

* Đáp án

* Hướng dẫn giải

Đáp án: 16

Phương pháp giải:

Phương pháp tìm tập hợp điểm biểu diễn số phức

Bước 1: Gọi số phức \(z = x + yi\) có điểm biểu diễn là \(M(x;y)\)

Bước 2: Thay z vào đề bài \( \Rightarrow \) Sinh ra một phương trình:

+) Đường thẳng: \(Ax + By + C = 0.\)

+) Đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0.\)

+) Parabol: \(y = a.{x^2} + bx + c\)

+) Elip: \(\frac{{{x^2}}}{a} + \frac{{{y^2}}}{b} = 1\)

Giải chi tiết:

Giả sử ta có số phức \(z = x + yi\). Thay vào điều kiện \(2|z - 1 - 2i| = |3i + 1 - 2\bar z|\)

\(2|(x + yi) - 1 - 2i| = |3i + 1 - 2(x - yi)| \Leftrightarrow 2|(x - 1) + (y - 2)i| = |(1 - 2x) + (3 + 2y)i|\) 2(x-1)2+(y-2)2 =(1-2x)2+(3+2y)2

\( \Leftrightarrow 4{(x - 1)^2} + 4{(y - 2)^2} = {(1 - 2x)^2} + {(3 + 2y)^2}\)

\( \Leftrightarrow 4{x^2} - 8x + 4 + 4{y^2} - 16y + 16 = 4{x^2} - 4x + 1 + 4{y^2} + 12y + 9\)

\( \Leftrightarrow 4x + 28y - 10 = 0\)\( \Leftrightarrow 2x + 14y - 5 = 0\)

\( \Rightarrow a = 2,{\mkern 1mu} {\mkern 1mu} b = 14\)

Vậy \(P = a + b = 2 + 14 = 16.\)

Copyright © 2021 HOCTAP247