Đáp án: \({30^0}\)
Phương pháp giải:
Xác định góc giữa hai mặt phẳng :
- Tìm giao tuyến \(\Delta \) của .
- Xác định 1 mặt phẳng .
- Tìm các giao tuyến
- Góc giữa hai mặt phẳng :
Giải chi tiết:
Gọi M là trung điểm của BC.
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AM \bot BC}\\{SA \bot BC}\end{array}} \right. \Rightarrow BC \bot \left( {SAM} \right) \Rightarrow BC \bot SM\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {SBC} \right) \cap \left( {ABC} \right) = BC}\\{SM \subset \left( {SBC} \right),{\mkern 1mu} SM \bot BC}\\{AM \subset \left( {ABC} \right),{\mkern 1mu} AM \bot BC}\end{array}} \right.\) \( \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = \angle \left( {SM;AM} \right) = \angle SMA\)
Tam giác SAM vuông tại A: \(SA = 1,{\mkern 1mu} {\mkern 1mu} AM = \frac{{2.\sqrt 3 }}{2} = \sqrt 3 \) (chiều cao của tam giác đều cạnh 2)
\( \Rightarrow \tan \angle SMA = \frac{{SA}}{{AM}} = \frac{1}{{\sqrt 3 }}\)
\( \Rightarrow \angle SMA = {30^0} \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = {30^0}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247