Cho hình chóp (S.ABC) có SA vuông góc với mặt phẳng (ABC)

Câu hỏi :

Cho hình chóp \(S.ABC\)\(SA\) vuông góc với mặt phẳng (ABC), \(SA = 1\) và đáy \(ABC\) là tam giác đều có độ dài cạnh bằng 2. Tính góc giữa hai mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\).

* Đáp án

* Hướng dẫn giải

Đáp án: \({30^0}\)

Phương pháp giải:

 

Xác định góc giữa hai mặt phẳng (α ),(β ):

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng (ảnh 1)

- Tìm giao tuyến \(\Delta \) của (α),(β ).

- Xác định 1 mặt phẳng (γ )Δ.

- Tìm các giao tuyến a=(α)(γ ),b=(β )(γ)

- Góc giữa hai mặt phẳng (α ),(β )((α );(β )^)=(a;b^)

Giải chi tiết:

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng (ảnh 2)

Gọi M là trung điểm của BC.

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AM \bot BC}\\{SA \bot BC}\end{array}} \right. \Rightarrow BC \bot \left( {SAM} \right) \Rightarrow BC \bot SM\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {SBC} \right) \cap \left( {ABC} \right) = BC}\\{SM \subset \left( {SBC} \right),{\mkern 1mu} SM \bot BC}\\{AM \subset \left( {ABC} \right),{\mkern 1mu} AM \bot BC}\end{array}} \right.\) \( \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = \angle \left( {SM;AM} \right) = \angle SMA\)

Tam giác SAM vuông tại A: \(SA = 1,{\mkern 1mu} {\mkern 1mu} AM = \frac{{2.\sqrt 3 }}{2} = \sqrt 3 \) (chiều cao của tam giác đều cạnh 2)

\( \Rightarrow \tan \angle SMA = \frac{{SA}}{{AM}} = \frac{1}{{\sqrt 3 }}\)

\( \Rightarrow \angle SMA = {30^0} \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = {30^0}\).

Copyright © 2021 HOCTAP247