Đáp án: \(\frac{{41}}{8}\)
Phương pháp giải:
Sử dụng phương pháp hàm số để giải bài toán.
Giải chi tiết:
Ta có: \(2x + y{.4^{x + y - 1}} \ge 3\)
\( \Leftrightarrow 2x - 3 + y{.4^x}{.4^{y - 1}} \ge 0\)
\( \Leftrightarrow \left( {2x - 3} \right){.4^{ - x}} + y{.4^{y - 1}} \ge 0\)
\( \Leftrightarrow y{.4^{y - 1}} \ge \left( {3 - 2x} \right){.4^{ - x}}\)
\( \Leftrightarrow y{.2^{2y - 2}} \ge \left( {3 - 2x} \right){.2^{ - 2x}}\)
\( \Leftrightarrow {2^3}.y{.2^{2y - 2}} \ge {2^3}.\left( {3 - 2x} \right){.2^{ - 2x}}\)
\( \Leftrightarrow 2y{.2^{2y}} \ge \left( {3 - 2x} \right){.2^{3 - 2x}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 1 \right)\)
TH1: Với \(3 - 2x \le 0\)\( \Leftrightarrow x \ge \frac{3}{2}\)
\( \Rightarrow \left( 1 \right)\) đúng với mọi giá trị \(\left\{ {\begin{array}{*{20}{l}}{x \ge \frac{3}{2}}\\{y \ge 0}\end{array}} \right.\)
\( \Rightarrow P = {x^2} + {y^2} + 4x + 2y \ge \frac{{33}}{4}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 2 \right)\)
TH2: Với \(3 - 2x > 0\)\( \Leftrightarrow 0 \le x < \frac{3}{2}\)
Xét hàm số: \(f\left( t \right) = t{.2^t}\) với \(t \ge 0\)
\( \Rightarrow f'\left( t \right) = {2^t} + t{.2^t}.\ln 2 > 0{\mkern 1mu} {\mkern 1mu} \forall t \ge 0\)
\( \Rightarrow f\left( t \right)\) là hàm số đồng biến trên \(\left( {0; + \infty } \right).\)
\( \Rightarrow \left( 1 \right) \Leftrightarrow f\left( {2y} \right) \ge f\left( {3 - 2x} \right)\)\( \Leftrightarrow 2y \ge 3 - 2x\)\( \Leftrightarrow y \ge \frac{3}{2} - x\)
\( \Rightarrow P = {x^2} + {y^2} + 4x + 2y\)\( \ge {x^2} + {\left( {\frac{3}{2} - x} \right)^2} + 4x + 3 - 2x\)\( = 2{x^2} - x + \frac{{21}}{4}\)
\( \Rightarrow P = 2{\left( {x - \frac{1}{4}} \right)^2} + \frac{{41}}{8} \ge \frac{{41}}{8}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 3 \right)\)
Từ (2) và (3) ta được: \(Min{\mkern 1mu} {\mkern 1mu} P = \frac{{41}}{8}\)
Dấu “=” xảy ra \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{1}{4}}\\{y = \frac{5}{4}}\end{array}} \right..\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247