Cho hình hộp chữ nhật có diện tích toàn phần bằng 36, độ dài đường chéo bằng 6. Tìm giá trị lớn nhất của thể tích khối hộp đó

Câu hỏi :

Cho hình hộp chữ nhật có diện tích toàn phần bằng 36, độ dài đường chéo bằng 6. Tìm giá trị lớn nhất của thể tích khối hộp đó.

* Đáp án

* Hướng dẫn giải

Đáp án: \(8\sqrt 2 \)

Phương pháp giải:

- Gọi số đo của hình hộp chữ nhật là \(a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\). Diện tích toàn phần hình hộp chữ nhật là \({S_{tp}} = 2\left( {ab + bc + ca} \right)\) và thể tích khối hộp chữ nhật là \(V = abc\).

- Sử dụng hằng đẳng thức biểu diễn \(a + c\) theo \(b\).

- Tính thể tích theo biến \(b\), sử dụng phương pháp hàm số để tìm GTLN của hàm số.

Giải chi tiết:

Gọi số đo của hình hộp chữ nhật là \(a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\).

Khi đó ta có \({S_{tp}} = 2\left( {ab + bc + ca} \right) = 36\) và độ dài đường chéo bằng 6 nên \({a^2} + {b^2} + {c^2} = 36\).

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{a^2} + {b^2} + {c^2} = 36}\\{ab + bc + ca = 18}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{{\left( {a + b + c} \right)}^2} = 72}\\{ab + bc + ca = 18}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a + b + c = 6\sqrt 2 }\\{b\left( {a + c} \right) + ac = 18}\end{array}} \right.\)

Khi đó V=abc=b[18-b(a+c)]

=b[18-b(62 -b)]

\( = b\left[ {18 - 6\sqrt 2 b + {b^2}} \right]\)

\( = {b^3} - 6\sqrt 2 {b^2} + 18b = f\left( b \right)\)

Ta có: a+c=62 -bb(62 -b)+ac=18a+c=62 -bac=18+b2-62b

Để tồn tại a,c thì S24P(62 -b)24(18+b2-62b)

\( \Leftrightarrow {b^2} - 12\sqrt 2 b + 72 \ge 72 + 4{b^2} - 24\sqrt 2 b\)

\( \Leftrightarrow 3{b^2} - 12\sqrt 2 b \le 0\)

\( \Leftrightarrow 0 \le b \le 4\sqrt 2 \)

Xét hàm số \(f\left( b \right) = {b^3} - 6\sqrt 2 {b^2} + 18b{\mkern 1mu} {\mkern 1mu} \left( {0 < b \le 4\sqrt 2 } \right)\) ta có: \(f'\left( b \right) = 3{b^2} - 12\sqrt 2 b + 18 = 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}{b = 3\sqrt 2 }\\{b = \sqrt 2 }\end{array}} \right.{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)\)

\(f\left( {3\sqrt 2 } \right) = 0;{\mkern 1mu} {\mkern 1mu} f\left( {\sqrt 2 } \right) = 8\sqrt 2 \)

Ta có BBT:

 Cho hình hộp chữ nhật có diện tích toàn phần bằng 36, độ dài đường chéo bằng 6. Tìm giá trị lớn nhất của thể tích khối hộp đó (ảnh 1)

Từ BBT \[ \Rightarrow \mathop {max}\limits_{\left[ {0;4\sqrt 2 } \right]} f\left( b \right) = 8\sqrt 2 \].

Vậy Vmax=82b=2.

Copyright © 2021 HOCTAP247