Đáp án: 200V
Phương pháp giải:
Biểu thức cường độ dòng điện: \[i = {I_0}.cos\left( {\omega t + \varphi } \right)\]
Biểu thức điện áp tức thời:
Sử dụng hệ thức độc lập theo thời gian của các đại lượng vuông pha.
Điện áp cực đại hai đầu mạch: \[{U_0} = \sqrt {U_{0R}^2 + {{\left( {{U_{0L}} - {U_{0C}}} \right)}^2}} \]
Giải chi tiết:
Ta có:
Do \[{u_C}\] và \({u_L}\) vuông pha với \({u_R}\)
+ Tại \({t_2}\) khi \({u_L} = {u_C} = 0 \Rightarrow {u_R} = {U_{0R}} = 100V\)
+ Tại thời điểm \({t_1}\) , áp dụng hệ thức độc lập với thời gian của hai đại lượng vuông pha ta có:
\(\left\{ {\begin{array}{*{20}{l}}{{{\left( {\frac{{{u_R}}}{{{U_{0R}}}}} \right)}^2} + {{\left( {\frac{{{u_L}}}{{{U_{0L}}}}} \right)}^2} = 1}\\{{{\left( {\frac{{{u_R}}}{{{U_{0R}}}}} \right)}^2} + {{\left( {\frac{{{u_C}}}{{{U_{0C}}}}} \right)}^2} = 1}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{{{{50}^2}}}{{{{100}^2}}} + \frac{{{{30}^2}}}{{U_{0L}^2}} = 1 \Rightarrow {U_{0L}} = 20\sqrt 3 V}\\{\frac{{{{50}^2}}}{{{{100}^2}}} + \frac{{{{180}^2}}}{{U_{0C}^2}} = 1 \Rightarrow {U_{0C}} = 120\sqrt 3 V}\end{array}} \right.\)
Điện áp cực đại ở hai đầu đoạn mạch: \({U_0} = \sqrt {U_{0R}^2 + {{\left( {{U_{0L}} - {U_{0C}}} \right)}^2}} \)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247