Số nghiệm của hệ phương trình (x+1)^2 + 2|x-1| = 3

Câu hỏi :

Số nghiệm của hệ phương trình {(x+1)2+2|x-1|=3y2+2x+y=0 là:

A. 1

B. 2

C. 3

D. 4

* Đáp án

* Hướng dẫn giải

Phương pháp giải:

- Giải phương trình thứ nhất tìm \[x\], sử dụng \[{A^2} = {\left| A \right|^2}\].

- Thế \[x\] vào phương trình thứ hai, giải tìm \[y\] và kết luận nghiệm của hệ.

Giải chi tiết:

Xét phương trình \[{\left( {x + 1} \right)^2} + 2\left| {x - 1} \right| = 3\] ta có:

\[{\left( {x + 1} \right)^2} + 2\left| {x - 1} \right| = 3\]

\[ \Leftrightarrow {\left| {x + 1} \right|^2} + 2\left| {x - 1} \right| = 3\]

[|x-1|=1|x-1|=-3(vonghiem)

[x-1=1x-1= -1[x=2x=0

Với \(x = 2\), thay vào phương trình \({y^2} + 2x + y = 0\) ta được \({y^2} + 4 + y = 0\) (Vô nghiệm).

Với \(x = 0\), thay vào phương trình \({y^2} + 2x + y = 0\) ta được y2+y=0[y=0y=-1.

Vậy hệ phương trình đã cho có 2 nghiệm \(\left( {x;y} \right) = \left( {0;0} \right)\) hoặc \(\left( {x;y} \right) = \left( {0; - 1} \right)\).

Copyright © 2021 HOCTAP247