Cho các số phức z1, z2 thỏa mãn |z1| = 3, |z2| = 4 và

Câu hỏi :

Cho các số phức z1,z2 thỏa mãn |z1|=3,|z2|=4\(\left| {{z_1} - {z_2}} \right| = 5\). Gọi A, B lần lượt là điểm biểu diễn các số phức \({z_1},{z_2}\). Diện tích S của tam giác OAB với O là gốc tọa độ là:

A. \(S = \frac{{25}}{2}\).

B. \(S = 5\sqrt 2 \)

C. \(S = 6\)

D. \(S = 12\)

* Đáp án

* Hướng dẫn giải

Phương pháp giải:

Sử dụng phương pháp hình học.

Giải chi tiết:

\(\left| {{z_1}} \right| = 3,{\mkern 1mu} \left| {{z_2}} \right| = 4;\left| {{z_1} - {z_2}} \right| = 5 \Rightarrow OA = 3,{\mkern 1mu} OB = 4,{\mkern 1mu} {\mkern 1mu} AB = 5 \Rightarrow \Delta OAB\) vuông tại O

\( \Rightarrow {S_{\Delta OAB}} = \frac{1}{2}.OA.OB = \frac{1}{2}.3.4 = 6\).

Copyright © 2021 HOCTAP247