Phương pháp giải:
- Gọi \(O = AC \cap BD \Rightarrow O\) là tâm đường tròn ngoại tiếp tam giác \(ABC\). Chứng minh \(A'O \bot \left( {ABCD} \right)\).
- Sử dụng định lí Pytago tính \(A'O\).
- Tính thể tích \({V_{ABCD.A'B'C'D'}} = A'O.{S_{ABCD}}\).
Giải chi tiết:
Gọi \(O = AC \cap BD \Rightarrow O\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).
Theo bài ra ta có: Điểm \(A'\) cách đều các đỉnh \(A,{\mkern 1mu} {\mkern 1mu} B,{\mkern 1mu} {\mkern 1mu} C\) nên \(A'O \bot \left( {ABC} \right)\) hay \(A'O \bot \left( {ABCD} \right)\).
\( \Rightarrow A'O \bot AO \Rightarrow \Delta A'AO\) vuông tại \(O\).
Áp dụng định lí Pytago ta có: \( \Rightarrow AO = \frac{1}{2}AC = \frac{{5a}}{6}\).
\({S_{ABCD}} = AB.AD = a.\frac{4}{3}a = \frac{{4{a^2}}}{3}\).
Vậy \({V_{ABCD.A'B'C'D'}} = A'O.{S_{ABCD}} = \frac{{a\sqrt {11} }}{6}.\frac{{4{a^2}}}{3} = \frac{{2\sqrt {11} {a^3}}}{9}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247