Cho hàm số f(x) liên tục trên [-1;2] và thỏa mãn điều kiện

Câu hỏi :

Cho hàm số \(f(x)\) liên tục trên [-1;2] và thỏa mãn điều kiện f(x)=x+2 +xf(3-x2). Tính tích phân \(I = \int\limits_{ - 1}^2 {f(x)dx} \).

A. \(I = \frac{{14}}{3}\)

B. \(I = \frac{{28}}{3}\)

C. \(I = \frac{4}{3}\)

D. \(I = 2\)

* Đáp án

* Hướng dẫn giải

Phương pháp giải:

- Lấy tích phân từ \( - 1\) đến 2 của hai vế của phương trình đã cho.

- Sử dụng phương pháp tính tích phân bằng phương pháp đổi biến.

- Sử dụng tính chất không phụ thuộc vào biến của tích phân: abf(x)𝑑x =abf(u)𝑑u.

Giải chi tiết:

Ta có f(x)=x+2 +xf(3-x2)

I=-12f(x)𝑑x =-12x+2𝑑x +-12xf(3-x2)𝑑x

\( \Rightarrow I = {I_1} + {I_2}\)

Xét tích phân \({I_1} = \int\limits_{ - 1}^2 {\sqrt {x + 2} dx} \).

Đặt \(t = \sqrt {x + 2} \)\( \Rightarrow {t^2} = x + 2 \Rightarrow 2tdt = dx\).

Đổi cận: {x=-1t=1x=2t=2.

I1=12t.2t𝑑t =212t2𝑑t =2t33|12=143.

Xét tích phân I2=-12xf(3-x2)𝑑x.

Đặt u=3-x2du=-2xdxxdx= -12du.

Đổi cận: {x=1u=2x=2u=-1.

I2=2-1-12f(u)du =12-12f(x)𝑑x =12I

Vậy \(I = \frac{{14}}{3} + \frac{1}{2}I \Leftrightarrow \frac{1}{2}I = \frac{{14}}{3} \Leftrightarrow I = \frac{{28}}{3}\).

Copyright © 2021 HOCTAP247