Phương pháp giải:
Bài toán: Mỗi tháng đều gửi một số tiền là a đồng vào đầu mỗi tháng tính theo lại kép với lãi suất là r% mỗi tháng. Tính số tiền thu được sau n tháng: \({A_n} = \frac{{a\left( {1 + r} \right)\left[ {{{\left( {1 + r} \right)}^n} - 1} \right]}}{r}\)
Giải chi tiết:
Tìm số tự nhiên n nhỏ nhất để
\(\frac{{a\left( {1 + r} \right)\left[ {{{\left( {1 + r} \right)}^n} - 1} \right]}}{r} \ge 200 \Leftrightarrow \frac{{10.\left( {1 + 0,6\% } \right)\left[ {{{\left( {1 + 0,6\% } \right)}^n} - 1} \right]}}{{0,6\% }} \ge 200\)
\( \Leftrightarrow {\left( {1 + 0,6\% } \right)^n} \ge \frac{{200.0,6\% }}{{10.\left( {1 + 0,6\% } \right)}} + 1 \Leftrightarrow n \ge {\log _{1 + 0,6\% }}\left( {\frac{{200.0,6\% }}{{10.\left( {1 + 0,6\% } \right)}} + 1} \right) \approx 18,84 \Rightarrow {n_{\min }} = 19\)
Vậy sau ít nhất 19 tháng thì người đó trả được hết số nợ ngân hàng.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247