Gọi T là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số

Câu hỏi :

Gọi T là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số \(y = {x^4} - 2m{x^2} + 1\) đồng biến trên khoảng \(\left( {3; + \infty } \right)\). Tổng giá trị các phần tử của T bằng:

A. 9

B. 45

C. 55

D. 36

* Đáp án

* Hướng dẫn giải

Phương pháp giải:

- Để hàm số đồng biến trên \(\left( {3; + \infty } \right)\) thì \(y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {3; + \infty } \right)\) và bằng 0 tại hữu hạn điểm.

- Cô lập m, đưa bất phương trình về dạng \(m \le f\left( x \right){\mkern 1mu} {\mkern 1mu} \forall x \in \left( {3; + \infty } \right) \Rightarrow m \le \mathop {\min }\limits_{\left[ {3; + \infty } \right)} f\left( x \right)\).

- Đánh giá hoặc lập BBT để tìm \(\mathop {\min }\limits_{\left[ {3; + \infty } \right)} f\left( x \right)\).

Giải chi tiết:

TXĐ: \(D = \mathbb{R}\).

Ta có: \(y' = 4{x^3} - 4mx\).

Để hàm số đồng biến trên \(\left( {3; + \infty } \right)\) thì \(y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {3; + \infty } \right)\).

\( \Leftrightarrow 4{x^3} - 4mx \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {3; + \infty } \right)\)

\( \Leftrightarrow m \le {x^2}{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {3; + \infty } \right)\)

\( \Leftrightarrow m \le \min \left( {{x^2}} \right){\mkern 1mu} {\mkern 1mu} \forall x \in \left( {3; + \infty } \right)\)

\( \Leftrightarrow m \le {3^2} = 9\)

Kết hợp điều kiện bài toán ta có m là số nguyên dương \( \Rightarrow m \in \left\{ {1;2;3;...;9} \right\}\).

Vậy tổng các giá trị của m\(1 + 2 + 3 + ... + 9 = \frac{{9.10}}{2} = 45\).

Copyright © 2021 HOCTAP247