Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh A(2; - 3), B(3; - 2), diện tích bằng

Câu hỏi :

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh \(A\left( {2; - 3} \right),{\mkern 1mu} {\mkern 1mu} B\left( {3; - 2} \right)\), diện tích bằng \(\frac{3}{2}\) và trọng tâm G nằm trên đường thẳng \(3x - y - 8 = 0\). Tìm hoành độ điểm C, biết C có hoành độ dương.

A. 1

B. 2

C. 3

D. 4

* Đáp án

* Hướng dẫn giải

Phương pháp giải:

+) Từ giả thiết tính độ dài đường cao CH hạ từ đỉnh C: \[CH = \frac{{2{S_{\Delta ABC}}}}{{AB}}\]

+) Tham số hóa tọa độ điểm G trên đường thẳng \(3x - y - 8 = 0\), suy ra tọa độ điểm C theo tham số.

+) Dùng khoảng cách \[d\left( {C;AB} \right) = CH\] thiết lập phương trình và giải tham số ta tìm được đỉnh C.

Giải chi tiết:

Ta có AB=(3-2)2+(-2+3)2 =2

Gọi CH là đường cao hạ từ đỉnh C của tam giác ABC

\[ \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AB.CH \Rightarrow CH = \frac{{2{S_{\Delta ABC}}}}{{AB}} = \frac{{2.\frac{3}{2}}}{{\sqrt 2 }} = \frac{3}{{\sqrt 2 }} = d\left( {C;AB} \right)\]

\[G \in \left( {2x - y - 8 = 0} \right) \Rightarrow G\left( {t;3t - 8} \right)\]

G là trọng tâm tam giác \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{t = \frac{{2 + 3 + {x_C}}}{3}}\\{3t - 8 = \frac{{ - 3 - 2 + {y_C}}}{3}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_C} = 3t - 5}\\{{y_C} = 9t - 19}\end{array}} \right..C\left( {3t - 5;9t - 19} \right){\mkern 1mu} {\mkern 1mu} \left( {t > \frac{5}{3}} \right)\)

Ta có AB =(1;1) đường thẳng AB đi qua A và nhận \(\vec n = \left( {1; - 1} \right)\) là 1 VTPT nên có phương trình \(1\left( {x - 2} \right) - 1\left( {y + 3} \right) = 0 \Leftrightarrow x - y - 5 = 0\)

\( \Rightarrow d\left( {C;AB} \right) = \frac{{\left| {3t - 5 - 9t + 19 - 5} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{3}{{\sqrt 2 }}\)

|-6t+9|=3[-6t+9=3-6t+9=-3[t=1(ktm)t=2(tm)C(1;-1).

Copyright © 2021 HOCTAP247