Cho hình lăng trụ (ABC.A'B'C') có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm

Câu hỏi :

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\). Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(ABC\). Biết khoảng cách giữa hai đường thẳng \(AA'\) \(BC\) bằng \(\frac{{a\sqrt 3 }}{4}\). Tính theo \(a\) thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\).

A. \(V = \frac{{{a^3}\sqrt 3 }}{6}\)

B. \(V = \frac{{{a^3}\sqrt 3 }}{{12}}\)

C. \(V = \frac{{{a^3}\sqrt 3 }}{3}\)

D. \(V = \frac{{{a^3}\sqrt 3 }}{{24}}\)

* Đáp án

* Hướng dẫn giải

Phương pháp giải:

- Xác định đoạn vuông góc chung của hai đoạn thẳng \(AA'\) BC.

- Áp dụng hệ thức lượng trong tam giác vuông tính \(A'G\).

- Áp dụng công thức tính thể tích \({V_{ABC.A'B'C'}} = A'G.{S_{ABC}}\).

Giải chi tiết:

Cho hình lăng trụ (ABC.A'B'C') có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm (ảnh 1)

Gọi \(M\) là trung điểm của \(BC\). Vì tam giác \(ABC\) đều nên \(AM \bot BC\)\(AM = \frac{{a\sqrt 3 }}{2}\)

\( \Rightarrow AG = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}\).

Ta có \(A'G \bot \left( {ABC} \right)\) nên \(A'G \bot BC\); \(BC \bot AM\)\( \Rightarrow BC \bot \left( {MAA'} \right)\).

Trong \(\left( {AA'M} \right)\) kẻ \(MI \bot AA'\) tại \(I\); khi đó ta có \(BC \bot IM\) nên \(IM\) là đoạn vuông góc chung của \(AA'\)\(BC\), do đó \(d\left( {AA';BC} \right) = IM = \frac{{a\sqrt 3 }}{4}.\)

Trong \(\left( {AA'M} \right)\) kẻ \(GH \bot AA'\) tại \(H\), áp dụng định lí Ta-lét ta có \(\frac{{AG}}{{AM}} = \frac{{GH}}{{IM}} = \frac{2}{3}\) \( \Leftrightarrow GH = \frac{2}{3}.\frac{{a\sqrt 3 }}{4} = \frac{{a\sqrt 3 }}{6}\)

Áp dụng hệ thức lượng trong tam giác vuông \(AA'G\)  ta có:

\(\frac{1}{{H{G^2}}} = \frac{1}{{A'{G^2}}} + \frac{1}{{A{G^2}}} \Leftrightarrow A'G = \frac{{AG.HG}}{{\sqrt {A{G^2} - H{G^2}} }} = \frac{{\frac{{a\sqrt 3 }}{3}.\frac{{a\sqrt 3 }}{6}}}{{\sqrt {\frac{{{a^2}}}{3} - \frac{{{a^2}}}{{12}}} }} = \frac{a}{3}\).

Tam giác \(ABC\) đều cạnh \(a\) nên \({S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\).

Vậy \({V_{ABC.A'B'C'}} = A'G.{S_{ABC}} = \frac{a}{3}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{{12}}\).

Copyright © 2021 HOCTAP247