A. 6
B
Phương pháp giải: - Tìm đạo hàm của hàm số.
- Cô lập m, đưa bất phương trình về dạng \[m \le f(x)\forall x \in (a;b) \Leftrightarrow m \le \mathop {min}\limits_{[a;b]} f(x)\].
- Lập BBT của hàm số \[f(x)\] và kết luận.
Giải chi tiết:
Ta có hàm số nghịch biến trên khoảng khi
\[ \Leftrightarrow 4m \le 3{x^2} - 2x - 9\left( * \right)\]
Đặt \[f\left( x \right) = 3{x^2} - 2x - 9\]\[ \Rightarrow f'\left( x \right) = 6x - 2 = 0 \Leftrightarrow x = \frac{1}{3}\]
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy bất phương trình (*) xảy ra khi
Kết hợp điều kiện nên . Mà .
Vậy có 7 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247