Trên bàn có một cốc nước hình trụ đầy nước, có chiều cao bằng 3 lần đường kính của đáy. Một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính b...

Câu hỏi :

Trên bàn một cốc nước hình trụ đầy nước, chiều cao bằng 3 lần đường kính của đáy. Một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính của cốc nước. Người ta thả từ từ vài cốc nước viên bi và khối nón đó (hình vẽ) thì thấy nước trong cốc tràn ra ngoài. Tính tỉ số thể tích của lượng nước còn lại trong cốc lượng nước ban đâu (bỏ qua bề dày của lớp vỏ thủy tinh).
Trên bàn có một cốc nước hình trụ đầy nước, có chiều cao bằng 3 lần đường kính của đáy. Một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính của cốc nước. Người ta thả từ từ vài cốc nước viên bi và khối nón đó (ảnh 1)

A. \[\frac{1}{2}\]

B. \[\frac{2}{3}\]

C. \[\frac{4}{9}\]

D. \[\frac{5}{9}\]

* Đáp án

* Hướng dẫn giải

Phương pháp giải: Thể tích khối nón: \[{V_{non}} = \frac{1}{3}\pi {r^2}h\]

Thể tích khối trụ: \[{V_{tru}} = \pi {r^2}h\]

Thể tích khối cầu: \[{V_{cau}} = \frac{4}{3}\pi {r^3}\]

Giải chi tiết:

Giả sử cốc nước hình trụ có bán kính đáy là r, khi đó, chiều cao của hình trụ là 6r. Thể tích của khối trụ là: 

\[{V_{tru}} = \pi {r^2}.6r = 6\pi {r^3}\]

Khối cầu có bán kính bằng r và có thể tích là:  \[{V_{cau}} = \frac{4}{3}\pi {r^3}\]

Khối nón có bán kính đáy bằng r và có chiều cao \[h = 6r - 2r = 4r\], có thể tích là:  \[{V_{non}} = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {r^2}.4r = \frac{4}{3}\pi {r^3}\]

Thể tích của lượng nước còn lại là: \[V = {V_{tru}} - {V_{cau}} - {V_{non}} = 6\pi {r^3} - \frac{4}{3}\pi {r^3} - \frac{4}{3}\pi {r^3} = \frac{{10}}{3}\pi {r^3}\]

Tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu là: \[\frac{{\frac{{10}}{3}\pi {r^3}}}{{6\pi {r^3}}} = \frac{5}{9}\]

Chọn: D

Copyright © 2021 HOCTAP247