Cho hàm số \[y = f(x)\] có đạo hàm trên R và có đồ thị như hình vẽ. Hàm số \[y = f({x^2} - 2x)\] có bao nhiêu điểm cực trị?
C
Phương pháp giải: - Đặt \[y = g\left( x \right) = f\left( {{x^2} - 2x} \right)y = g\left( x \right) = f\left( {{x^2} - 2x} \right)\], tính đạo hàm của hàm số.
- Số cực trị của hàm số là số nghiệm bội lẻ của phương trình
Giải chi tiết:
Đặt \[y = g\left( x \right) = f\left( {{x^2} - 2x} \right) \Rightarrow g\prime \left( x \right) = \left( {2x - 2} \right)f'\left( {x2 - 2x} \right).\]
Trong đó \[x = 1\] là nghiệm bội 3, hai nghiệm còn lại là nghiệm đơn.
Vậy hàm số đã cho có 3 điểm cực trị.
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247