Trong không gian Oxyz cho hình thang cân ABCD có đáy AB và CD. Biết

Câu hỏi :

Trong không gian Oxyz cho hình thang cân ABCD có đáy ABCD. Biết \[A(3;1; - 2),B( - 1;3;2),C( - 6;3;6);D(a;b;c);a,b,c \in \mathbb{R}\]. Giá trị a + b + c bằng

A. -1

B. 1

C. 3

D. -3

* Đáp án

D

* Hướng dẫn giải

Phương pháp giải: - Sử dụng tính chất hình thang cân: ABCD là hình thang cân nên \[\left\{ \begin{array}{l}AD = BC\\AB\parallel CD\end{array} \right.\]

\[\overrightarrow {BA} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {CD} \] cùng hướng nên CD=kBA(k>0), tham số hóa tọa độ điểm D.

- Thay vào biểu thức  rồi tìm D.

- Loại trường hợp \[\overrightarrow {AD} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BC} \] cùng phương.

Giải chi tiết:

Trong không gian Oxyz cho hình thang cân ABCD có đáy AB và CD. Biết (ảnh 1)

Vì \[ABCD\]  là hình thang cân nên \[\left\{ \begin{array}{l}AD = BC\\AB\parallel CD\end{array} \right.\]

Ta có: A(3;1;-2);B(-1;3;2);C(-6;3;6);D(a;b;c)

BA =(4;-2;-4);CD=(a+6;b-3;c-6).

Vì \[\overrightarrow {BA} ,\overrightarrow {CD} \] cùng hướng nên CD =kBA(k>0), khi đó ta có:

{a+6=4kb-3=-2kc-6= -4k{a=4k-6b=-2k+3c= -4k+6D(4k-6;-2k+3;-4k+6).Vì \[ABCD\] là hình thang cân nên \[AD = BC \Leftrightarrow A{D^2} = B{C^2}\].

\[\begin{array}{l} \Leftrightarrow {\left( {4k - 9} \right)^2} + {\left( { - 2k + 2} \right)^2} + {\left( { - 4k + 8} \right)^2} = {\left( { - 5} \right)^2} + {0^2} + {4^2}\\ \Leftrightarrow 36{k^2} - 144k + 108 = 0 \Leftrightarrow \left[ \begin{array}{l}k = 3\\k = 1\end{array} \right.\left( {tm} \right)\end{array}\]

Với \[k = 3 \Rightarrow D\left( {6; - 3; - 6} \right)\].

Khi đó ta có: AD =(3;-4;-4),BC =(-5;0;4) không cùng phương (thỏa mãn).

Với \[k = 1 \Rightarrow D\left( { - 2;1;2} \right)\].

Khi đó ta có: AD =(-5;0;4),BC =(-5;0;4) cùng phương (không thỏa mãn).

Vậy D(6;-3;-6)a+b+c= -3.

Chọn D.

Copyright © 2021 HOCTAP247