D
Phương pháp giải: - Xét tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \sin 2x.f\left( {{{\cos }^2}x} \right)dx\], đổi biến \[t = {\cos ^2}x\]. Tính được \[\mathop \smallint \limits_0^1 f\left( x \right)dx\].
- Sử dụng tính chất tích phân \[\mathop \smallint \limits_a^b \left[ {f\left( x \right) + g\left( x \right)} \right]dx = \mathop \smallint \limits_a^b f\left( x \right)dx + \mathop \smallint \limits_a^b g\left( x \right)dx\], phân tích \[\mathop \smallint \limits_0^1 \left[ {2f\left( {1 - x} \right) - 3{x^2} + 5} \right]dx\]
- Tiếp tục đổi biến hoặc đưa biến vào vi phân, biểu diễn \[\mathop \smallint \limits_0^1 \left[ {2f\left( {1 - x} \right) - 3{x^2} + 5} \right]dx\] theo \[\mathop \smallint \limits_0^1 f\left( x \right)dx\] và tính.
Giải chi tiết:
Xét tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \sin 2x.f\left( {{{\cos }^2}x} \right)dx\].
Đặt .
Đổi cận: \[x = 0 \Rightarrow t = 1,{\mkern 1mu} {\mkern 1mu} x = \frac{\pi }{2} \Rightarrow t = 0\].
Khi đó ta có .
Ta có:
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247