Một hộp chứa 10 quả cầu được đánh số theo thứ tự từ 1 đến 10, lấy ngẫu nhiên 5 quả cầu. Xác suất để tích các số ghi trên 5 quả cầu đó chia hết cho 3 bằng

Câu hỏi :

Một hộp chứa 10 quả cầu được đánh số theo thứ tự từ 1 đến 10, lấy ngẫu nhiên 5 quả cầu. Xác suất để tích các số ghi trên 5 quả cầu đó chia hết cho 3 bằng:

A. \(\frac{5}{{12}}\)

B. \(\frac{7}{{12}}\)

C. \(\frac{1}{{12}}\)

D. \(\frac{{11}}{{12}}\)

* Đáp án

D

* Hướng dẫn giải

Phương pháp giải: - Tính số phần tử của không gian mẫu.

- Gọi A là biến cố: “tích các số ghi trên 5 quả cầu đó chia hết cho 3”. Để tích 5 số chia hết cho 3 thì trong 5 số phải có ít nhất 1 số thuộc tập X. Xét biến cố đối.

- Sử dụng công thức \[P\left( A \right) = 1 - P\left( {\overline A } \right)\].

Giải chi tiết:

Chọn ngẫu nhiên 5 quả cầu từ 10 quả cầu  Không gian mẫu:n(Ω )=C105.

Gọi A là biến cố: “tích các số ghi trên 5 quả cầu đó chia hết cho 3”.

Ta chia các số từ 1 đến 10 thành 2 tập hợp: \[X = \left\{ {3;6;9} \right\}\;v\`a \;Y = \left\{ {1;2;4;5;7;8;10} \right\}\].

Để tích 5 số chia hết cho 3 thì trong 5 số phải có ít nhất 1 số thuộc tập X.

Xét biến cố đối: “Không có số nào trong 5 số chia hết cho 3”  Chọn 5 số từ tập hợp Y có \[C_7^5\] cách.

\[ \Rightarrow n\left( {\overline A } \right) = C_7^5\; \Rightarrow P\left( {\overline A } \right) = \frac{{C_7^5}}{{C_{10}^5}} = \frac{1}{{12}}.\]

Vậy \[P\left( A \right) = 1 - P\left( {\overline A } \right) = \frac{{11}}{{12}}\].

Chọn D.

Copyright © 2021 HOCTAP247