Cho hàm số f(x)có f'(x) = (x^3- 1)(x^2 - 3x + 2). Số điểm cực đại của hàm số đã cho là:

Câu hỏi :

Cho hàm số \[f(x)\]\[f'(x) = ({x^3} - 1)({x^2} - 3x + 2)\]. Số điểm cực đại của hàm số đã cho là:

* Đáp án

* Hướng dẫn giải

Đáp án: 0

Phương pháp giải: Số điểm cực trị của đồ thị hàm số \[y = f\left( x \right)\] là số nghiệm bội lẻ của phương trình \[f'\left( x \right) = 0\].

Điểm \[x = {x_0}\] là điểm cực đại của hàm số \[y = f\left( x \right) \Leftrightarrow \] tại điểm \[x = {x_0}\] thì hàm số có \[y\prime \]  đổi dấu từ dương sang âm.

Giải chi tiết:

Ta có: \[f'\left( x \right) = 0\]

\[\begin{array}{l} \Leftrightarrow \left( {{x^3} - 1} \right)\left( {{x^2} - 3x + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x^3} - 1 = 0\\{x^2} - 3x + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^3} = 1\\\left( {x - 1} \right)\left( {x - 2} \right) = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x - 1 = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 1\\x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\end{array}\]

Ta thấy \[x = 1\] là nghiệm bội 4 của phương trình \[f\prime \left( x \right) = 0 \Rightarrow x = 1\] không là điểm cực trị của hàm số.

Ta có bảng xét dấu:

Cho hàm số f(x)có f'(x) = (x^3- 1)(x^2 - 3x + 2). Số điểm cực đại của hàm số đã cho là: (ảnh 1)

Ta thấy qua điểm \[x = 2\] thì \[f\prime \left( x \right)\;\]đổi dấu từ âm sang dương nên \[x = 2\] là điểm cực tiểu của hàm số.

 Hàm số không có điểm cực đại.

Copyright © 2021 HOCTAP247